Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 134 papers

Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome.

  • Guang-Hui Liu‎ et al.
  • Nature‎
  • 2011‎

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal human premature ageing disease, characterized by premature arteriosclerosis and degeneration of vascular smooth muscle cells (SMCs). HGPS is caused by a single point mutation in the lamin A (LMNA) gene, resulting in the generation of progerin, a truncated splicing mutant of lamin A. Accumulation of progerin leads to various ageing-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts obtained from patients with HGPS. HGPS-iPSCs show absence of progerin, and more importantly, lack the nuclear envelope and epigenetic alterations normally associated with premature ageing. Upon differentiation of HGPS-iPSCs, progerin and its ageing-associated phenotypic consequences are restored. Specifically, directed differentiation of HGPS-iPSCs to SMCs leads to the appearance of premature senescence phenotypes associated with vascular ageing. Additionally, our studies identify DNA-dependent protein kinase catalytic subunit (DNAPKcs, also known as PRKDC) as a downstream target of progerin. The absence of nuclear DNAPK holoenzyme correlates with premature as well as physiological ageing. Because progerin also accumulates during physiological ageing, our results provide an in vitro iPSC-based model to study the pathogenesis of human premature and physiological vascular ageing.


Stem cells. Holding your breath for longevity.

  • Alejandro Ocampo‎ et al.
  • Science (New York, N.Y.)‎
  • 2015‎

No abstract available


Epithelial-stromal interaction via Notch signaling is essential for the full maturation of gut-associated lymphoid tissues.

  • Yuuki Obata‎ et al.
  • EMBO reports‎
  • 2014‎

Intrinsic Notch signaling in intestinal epithelial cells restricts secretory cell differentiation. In gut-associated lymphoid tissue (GALT), stromal cells located beneath the follicle-associated epithelium (FAE) abundantly express the Notch ligand delta-like 1 (Dll1). Here, we show that mice lacking Rbpj-a gene encoding a transcription factor implicated in Notch signaling-in intestinal epithelial cells have defective GALT maturation. This defect can be attributed to the expansion of goblet cells, which leads to the down-regulation of CCL20 in FAE. These data demonstrate that epithelial Notch signaling maintained by stromal cells contributes to the full maturation of GALT by restricting secretory cell differentiation in FAE.


Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells.

  • Chen Ling‎ et al.
  • Protein & cell‎
  • 2019‎

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.


FOXO3-Engineered Human ESC-Derived Vascular Cells Promote Vascular Protection and Regeneration.

  • Pengze Yan‎ et al.
  • Cell stem cell‎
  • 2019‎

FOXO3 is an evolutionarily conserved transcription factor that has been linked to longevity. Here we wanted to find out whether human vascular cells could be functionally enhanced by engineering them to express an activated form of FOXO3. This was accomplished via genome editing at two nucleotides in human embryonic stem cells, followed by differentiation into a range of vascular cell types. FOXO3-activated vascular cells exhibited delayed aging and increased resistance to oxidative injury compared with wild-type cells. When tested in a therapeutic context, FOXO3-enhanced vascular cells promoted vascular regeneration in a mouse model of ischemic injury and were resistant to tumorigenic transformation both in vitro and in vivo. Mechanistically, constitutively active FOXO3 conferred cytoprotection by transcriptionally downregulating CSRP1. Taken together, our findings provide mechanistic insights into FOXO3-mediated vascular protection and indicate that FOXO3 activation may provide a means for generating more effective and safe biomaterials for cell replacement therapies.


Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones.

  • Keiichiro Suzuki‎ et al.
  • Cell stem cell‎
  • 2014‎

The utility of genome editing technologies for disease modeling and developing cellular therapies has been extensively documented, but the impact of these technologies on mutational load at the whole-genome level remains unclear. We performed whole-genome sequencing to evaluate the mutational load at single-base resolution in individual gene-corrected human induced pluripotent stem cell (hiPSC) clones in three different disease models. In single-cell clones, gene correction by helper-dependent adenoviral vector (HDAdV) or Transcription Activator-Like Effector Nuclease (TALEN) exhibited few off-target effects and a low level of sequence variation, comparable to that accumulated in routine hiPSC culture. The sequence variants were randomly distributed and unique to individual clones. We also combined both technologies and developed a TALEN-HDAdV hybrid vector, which significantly increased gene-correction efficiency in hiPSCs. Therefore, with careful monitoring via whole-genome sequencing it is possible to apply genome editing to human pluripotent cells with minimal impact on genomic mutational load.


miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS.

  • Min-Zu Wu‎ et al.
  • Nature cell biology‎
  • 2017‎

The mechanisms by which hypoxic tumours evade immunological pressure and anti-tumour immunity remain elusive. Here, we report that two hypoxia-responsive microRNAs, miR-25 and miR-93, are important for establishing an immunosuppressive tumour microenvironment by downregulating expression of the DNA sensor cGAS. Mechanistically, miR-25/93 targets NCOA3, an epigenetic factor that maintains basal levels of cGAS expression, leading to repression of cGAS during hypoxia. This allows hypoxic tumour cells to escape immunological responses induced by damage-associated molecular pattern molecules, specifically the release of mitochondrial DNA. Moreover, restoring cGAS expression results in an anti-tumour immune response. Clinically, decreased levels of cGAS are associated with poor prognosis for patients with breast cancer harbouring high levels of miR-25/93. Together, these data suggest that inactivation of the cGAS pathway plays a critical role in tumour progression, and reveal a direct link between hypoxia-responsive miRNAs and adaptive immune responses to the hypoxic tumour microenvironment, thus unveiling potential new therapeutic strategies.


Albumin gene targeting in human embryonic stem cells and induced pluripotent stem cells with helper-dependent adenoviral vector to monitor hepatic differentiation.

  • Kahoko Umeda‎ et al.
  • Stem cell research‎
  • 2013‎

Although progresses in developing differentiation procedures have been achieved, it remains challenging to generate hES/iPS cell-derived mature hepatocytes. We performed knock-in of a monomeric Kusabira orange (mKO1) cassette in the albumin (ALB) gene, in human embryonic stem (hES) cells and induced pluripotent stem (hiPS) cells, with the use of the helper-dependent adenovirus vector (HDAdV). Upon induction into the hepatic lineages, these knock-in hES/iPS cells differentiated into cells that displayed several known hepatic functions. The mKO1 knock-in (ALB/mKo1) hES/hiPS cells were used to visualize hepatic differentiation in vitro. mKO1 reporter expression recapitulated endogenous ALB transcriptional activity. ALB/mKo1 [Hi] population isolated by flow cytometry was confirmed to be enriched with ALB mRNA. Expression profile analyses revealed that characteristic hepatocyte genes and genes related to drug metabolism and many aspects of liver function were highly enriched in the ALB/mKo1 [Hi] population. Our data demonstrate that ALB/mKo1 knock-in hES/iPS cells are valuable resources for monitoring in vitro hepatic differentiation, isolation and analyses of hES and hiPS cells-derived hepatic cells that actively transcribing ALB. These knock-in hES/iPS cell lines could provide further insights into the mechanism of hepatic differentiation and molecular signatures of the hepatic cells derived from hES/iPS cells.


Macrohistone variants preserve cell identity by preventing the gain of H3K4me2 during reprogramming to pluripotency.

  • María J Barrero‎ et al.
  • Cell reports‎
  • 2013‎

Transcription-factor-induced reprogramming of somatic cells to pluripotency is a very inefficient process, probably due to the existence of important epigenetic barriers that are imposed during differentiation and that contribute to preserving cell identity. In an effort to decipher the molecular nature of these barriers, we followed a genome-wide approach, in which we identified macrohistone variants (macroH2A) as highly expressed in human somatic cells but downregulated after reprogramming to pluripotency, as well as strongly induced during differentiation. Knockdown of macrohistone variants in human keratinocytes increased the efficiency of reprogramming to pluripotency, whereas overexpression had opposite effects. Genome-wide occupancy profiles show that in human keratinocytes, macroH2A.1 preferentially occupies genes that are expressed at low levels and are marked with H3K27me3, including pluripotency-related genes and bivalent developmental regulators. The presence of macroH2A.1 at these genes prevents the regain of H3K4me2 during reprogramming, imposing an additional layer of repression that preserves cell identity.


Efficient and accurate homologous recombination in hESCs and hiPSCs using helper-dependent adenoviral vectors.

  • Emi Aizawa‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2012‎

Low efficiencies of gene targeting via homologous recombination (HR) have limited basic research and applications using human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Here, we show highly and equally efficient gene knockout and knock-in at both transcriptionally active (HPRT1, KU80, LIG1, LIG3) and inactive (HB9) loci in these cells using high-capacity helper-dependent adenoviral vectors (HDAdVs). Without the necessity of introducing artificial DNA double-strand breaks, 7-81% of drug-resistant colonies were gene-targeted by accurate HR, which were not accompanied with additional ectopic integrations. Even at the motor neuron-specific HB9 locus, the enhanced green fluorescent protein (EGFP) gene was accurately knocked in in 23-57% of drug-resistant colonies. In these clones, induced differentiation into the HB9-positive motor neuron correlated with EGFP expression. Furthermore, HDAdV infection had no detectable adverse effects on the undifferentiated state and pluripotency of hESCs and hiPSCs. These results suggest that HDAdV is one of the best methods for efficient and accurate gene targeting in hESCs and hiPSCs and might be especially useful for therapeutic applications.


Rapid and highly efficient generation of induced pluripotent stem cells from human umbilical vein endothelial cells.

  • Athanasia D Panopoulos‎ et al.
  • PloS one‎
  • 2011‎

The ability to induce somatic cells to pluripotency by ectopic expression of defined transcription factors (e.g. KLF-4, OCT4, SOX2, c-MYC, or KOSM) has transformed the future of regenerative medicine. Here we report somatic cell reprogramming of human umbilical vein endothelial cells (HUVECs), yielding induced pluripotent stem (iPS) cells with the fastest kinetics, and one of the highest reprogramming efficiencies for a human somatic cell to date. HUVEC-derived iPS (Huv-iPS) cell colonies appeared as early as 6 days after a single KOSM infection, and were generated with a 2.5-3% reprogramming efficiency. Furthermore, when HUVEC reprogramming was performed under hypoxic conditions in the presence of a TGF-beta family signaling inhibitor, colony formation increased an additional ∼2.5-fold over standard conditions. Huv-iPS cells were indistinguishable from human embryonic stem (ES) cells with regards to morphology, pluripotent marker expression, and their ability to generate all embryonic germ layers in vitro and in vivo. The high efficiency and rapid kinetics of Huv-iPS cell formation, coupled with the ease by which HUVECs can be collected, expanded and stored, make these cells an attractive somatic source for therapeutic application, and for studying the reprogramming process.


Activation-induced cytidine deaminase expression in CD4+ T cells is associated with a unique IL-10-producing subset that increases with age.

  • Hongyan Qin‎ et al.
  • PloS one‎
  • 2011‎

Activation-induced cytidine deaminase (AID), produced by the Aicda gene, is essential for the immunoglobulin gene (Ig) alterations that form immune memory. Using a Cre-mediated genetic system, we unexpectedly found CD4(+) T cells that had expressed Aicda (exAID cells) as well as B cells. ExAID cells increased with age, reaching up to 25% of the CD4(+) and B220(+) cell populations. ExAID B cells remained IgM(+), suggesting that class-switched memory B cells do not accumulate in the spleen. In T cells, AID was expressed in a subset that produced IFN-γ and IL-10 but little IL-4 or IL-17, and showed no evidence of genetic mutation. Interestingly, the endogenous Aicda expression in T cells was enhanced in the absence of B cells, indicating that the process is independent from the germinal center reaction. These results suggest that in addition to its roles in B cells, AID may have previously unappreciated roles in T-cell function or tumorigenesis.


Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning.

  • Setsuko Sahara‎ et al.
  • Neural development‎
  • 2007‎

Telencephalic patterning centers, defined by the discrete expression domains of distinct morphogens, Fgfs in the commissural plate (CoP), Wnts and Bmps in the cortical hem, and a ventral domain of Sonic hedgehog (Shh), are postulated to establish during development the initial patterning of the telencepahlon, including the neocortex. We show that the expression patterns of Sp5, Sp8, and Sp9, members of the Sp8-like family that are homologues of Drosophila buttonhead, correlate during early embryonic development with these three telencephalic patterning centers. To study potential functional relationships, we focused on Sp8, because it is transiently expressed in the CoP coincident with the expression of Fgf8, a morphogen implicated in area patterning of the neocortex. We also show that Sp8 is expressed in cortical progenitors in a high to low anterior-medial to posterior-lateral gradient across the ventricular zone. We used in utero electroporation of full-length and chimeric expression constructs to perform gain-of-function and loss-of-function studies of interactions between Sp8 and Fgf8 and their roles in cortical area patterning. We show that Fgf8 and Sp8 exhibit reciprocal induction in vivo in the embryonic telencephalon. Sp8 also induces downstream targets of Fgf8, including ETS transcription factors. In vitro assays show that Sp8 binds Fgf8 regulatory elements and is a direct transcriptional activator of Fgf8. We also show that Sp8 induction of Fgf8 is repressed by Emx2 in vitro, suggesting a mechanism to limit Fgf8 expression to the CoP. In vivo expression of a dominant negative Sp8 in the CoP indicates that Sp8 maintains expression of Fgf8 and also its effect on area patterning. Ectopic expression of Sp8 in anterior or posterior cortical poles induces significant anterior or posterior shifts in area patterning, respectively, paralleled by changes in expression of gene markers of positional identity. These effects of Sp8 on area patterning oppose those induced by ectopic expression of Fgf8, suggesting that in parallel to regulating Fgf8 expression, Sp8 also activates a distinct signaling pathway for cortical area patterning. In summary, Sp8 and Fgf8 robustly induce one another, and may act to balance the anterior-posterior area patterning of the cortex.


Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome.

  • Zeming Wu‎ et al.
  • Protein & cell‎
  • 2018‎

Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome (WS) are two of the best characterized human progeroid syndromes. HGPS is caused by a point mutation in lamin A (LMNA) gene, resulting in the production of a truncated protein product-progerin. WS is caused by mutations in WRN gene, encoding a loss-of-function RecQ DNA helicase. Here, by gene editing we created isogenic human embryonic stem cells (ESCs) with heterozygous (G608G/+) or homozygous (G608G/G608G) LMNA mutation and biallelic WRN knockout, for modeling HGPS and WS pathogenesis, respectively. While ESCs and endothelial cells (ECs) did not present any features of premature senescence, HGPS- and WS-mesenchymal stem cells (MSCs) showed aging-associated phenotypes with different kinetics. WS-MSCs had early-onset mild premature aging phenotypes while HGPS-MSCs exhibited late-onset acute premature aging characterisitcs. Taken together, our study compares and contrasts the distinct pathologies underpinning the two premature aging disorders, and provides reliable stem-cell based models to identify new therapeutic strategies for pathological and physiological aging.


Aberrant DNA Methylation in Human iPSCs Associates with MYC-Binding Motifs in a Clone-Specific Manner Independent of Genetics.

  • Athanasia D Panopoulos‎ et al.
  • Cell stem cell‎
  • 2017‎

Induced pluripotent stem cells (iPSCs) show variable methylation patterns between lines, some of which reflect aberrant differences relative to embryonic stem cells (ESCs). To examine whether this aberrant methylation results from genetic variation or non-genetic mechanisms, we generated human iPSCs from monozygotic twins to investigate how genetic background, clone, and passage number contribute. We found that aberrantly methylated CpGs are enriched in regulatory regions associated with MYC protein motifs and affect gene expression. We classified differentially methylated CpGs as being associated with genetic and/or non-genetic factors (clone and passage), and we found that aberrant methylation preferentially occurs at CpGs associated with clone-specific effects. We further found that clone-specific effects play a strong role in recurrent aberrant methylation at specific CpG sites across different studies. Our results argue that a non-genetic biological mechanism underlies aberrant methylation in iPSCs and that it is likely based on a probabilistic process involving MYC that takes place during or shortly after reprogramming.


CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs.

  • Lixia Wang‎ et al.
  • Protein & cell‎
  • 2017‎

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1 +/A272C and FUS +/G1566A mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis of motor neurons derived from SOD1 +/A272C and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.


Single-cell transcriptomic atlas of primate cardiopulmonary aging.

  • Shuai Ma‎ et al.
  • Cell research‎
  • 2021‎

Aging is a major risk factor for many diseases, especially in highly prevalent cardiopulmonary comorbidities and infectious diseases including Coronavirus Disease 2019 (COVID-19). Resolving cellular and molecular mechanisms associated with aging in higher mammals is therefore urgently needed. Here, we created young and old non-human primate single-nucleus/cell transcriptomic atlases of lung, heart and artery, the top tissues targeted by SARS-CoV-2. Analysis of cell type-specific aging-associated transcriptional changes revealed increased systemic inflammation and compromised virus defense as a hallmark of cardiopulmonary aging. With age, expression of the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) was increased in the pulmonary alveolar epithelial barrier, cardiomyocytes, and vascular endothelial cells. We found that interleukin 7 (IL7) accumulated in aged cardiopulmonary tissues and induced ACE2 expression in human vascular endothelial cells in an NF-κB-dependent manner. Furthermore, treatment with vitamin C blocked IL7-induced ACE2 expression. Altogether, our findings depict the first transcriptomic atlas of the aged primate cardiopulmonary system and provide vital insights into age-linked susceptibility to SARS-CoV-2, suggesting that geroprotective strategies may reduce COVID-19 severity in the elderly.


METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA.

  • Zeming Wu‎ et al.
  • Nucleic acids research‎
  • 2020‎

N6-Methyladenosine (m6A) messenger RNA methylation is a well-known epitranscriptional regulatory mechanism affecting central biological processes, but its function in human cellular senescence remains uninvestigated. Here, we found that levels of both m6A RNA methylation and the methyltransferase METTL3 were reduced in prematurely senescent human mesenchymal stem cell (hMSC) models of progeroid syndromes. Transcriptional profiling of m6A modifications further identified MIS12, for which m6A modifications were reduced in both prematurely senescent hMSCs and METTL3-deficient hMSCs. Knockout of METTL3 accelerated hMSC senescence whereas overexpression of METTL3 rescued the senescent phenotypes. Mechanistically, loss of m6A modifications accelerated the turnover and decreased the expression of MIS12 mRNA while knockout of MIS12 accelerated cellular senescence. Furthermore, m6A reader IGF2BP2 was identified as a key player in recognizing and stabilizing m6A-modified MIS12 mRNA. Taken together, we discovered that METTL3 alleviates hMSC senescence through m6A modification-dependent stabilization of the MIS12 transcript, representing a novel epitranscriptional mechanism in premature stem cell senescence.


SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer.

  • Shijia Bi‎ et al.
  • Protein & cell‎
  • 2020‎

SIRT7, a sirtuin family member implicated in aging and disease, is a regulator of metabolism and stress responses. It remains elusive how human somatic stem cell populations might be impacted by SIRT7. Here, we found that SIRT7 expression declines during human mesenchymal stem cell (hMSC) aging and that SIRT7 deficiency accelerates senescence. Mechanistically, SIRT7 forms a complex with nuclear lamina proteins and heterochromatin proteins, thus maintaining the repressive state of heterochromatin at nuclear periphery. Accordingly, deficiency of SIRT7 results in loss of heterochromatin, de-repression of the LINE1 retrotransposon (LINE1), and activation of innate immune signaling via the cGAS-STING pathway. These aging-associated cellular defects were reversed by overexpression of heterochromatin proteins or treatment with a LINE1 targeted reverse-transcriptase inhibitor. Together, these findings highlight how SIRT7 safeguards chromatin architecture to control innate immune regulation and ensure geroprotection during stem cell aging.


ChREBP deficiency prevents high sucrose diet-induced obesity through reducing sucrase expression.

  • Haruhiko Sakiyama‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2022‎

Obesity appears to be a major contributing factor for many health problems. Effective treatments for reducing weight gain, other than caloric restriction and exercise, are limited. The consumption of sugars is a major factor in the development of obesity in part by stimulating the transcription factor, carbohydrate response element binding protein (ChREBP), a process that is driven by de novo lipogenesis. Therefore, we hypothesized that inhibiting the action of ChREBP would be a promising strategy for alleviating these diseases. Using ChREBP deficient mice, the effect of a high intake of sucrose on body weight and blood glucose levels were investigated. Unlike wild type mice, ChREBP deficient mice did not gain much weight and their blood glucose and cholesterol levels remained relatively constant. In tracing it's cause, we found that the levels of expression of sucrase, an enzyme that digests sucrose, and both Glut2 and Glut5, a transporter of glucose and fructose, were not induced by feeding a high sucrose diet in the small intestine of ChREBP deficient mice. Our findings suggest that the inhibition of ChREBP could suppress weight gain even on a high sucrose diet.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: