Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 64 papers

Ginsenoside Rb1 prevents MPTP-induced changes in hippocampal memory via regulation of the α-synuclein/PSD-95 pathway.

  • Shaogang Qu‎ et al.
  • Aging‎
  • 2019‎

Memory deficiency is a common non-motor symptom of Parkinson's disease (PD), and conventionally, α-synuclein is considered to be an important biomarker for both motor and cognitive characteristics attributed to PD. However, the role of physiological α-synuclein in cognitive impairment remains undetermined. Ginsenoside Rb1 has been shown to protect dopaminergic neurons (DA) from death and inhibit α-synuclein fibrillation and toxicity in vitro. Our recent study also revealed that ginsenoside Rb1 ameliorates motor deficits and prevents DA neuron death via upregulating glutamate transporter GLT-1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Whether Rb1 can improve memory deficiency and the underlying mechanism is still unknown. In this study, we found that Rb1 can prevent the spatial learning and memory deficits, increase long-term potentiation (LTP) and hippocampal glutamatergic transmission in the MPTP mouse model. The underlying neuroprotective mechanism of Rb1-improved synaptic plasticity involves Rb1 promoting hippocampal CA3 α-synuclein expression, restoring the glutamate in the CA3-schaffer collateral-CA1 pathway, and sequentially increasing postsynaptic density-95 (PSD-95) expression. Thus, we provide evidence that Rb1 modulates memory function, synaptic plasticity, and excitatory transmission via the trans-synaptic α-synuclein/PSD-95 pathway. Our findings suggest that Rb1 may serve as a functional drug in treating the memory deficiency in PD.


Osthole alleviates neuropathic pain in mice by inhibiting the P2Y1-receptor-dependent JNK signaling pathway.

  • Ruili Li‎ et al.
  • Aging‎
  • 2020‎

There are many reports about natural products relieving neuralgia. Osthole is the main component of Angelica biserrata Yuan et Shan, a natural product that treats rheumatism through the elimination of inflammation and the alleviation of pain that has a long history in the clinic. The analgesic mechanism of osthole is complicated and confusing. Astrocytes have attracted increasing attention from pain researchers. Inhibitors targeting astrocytes are thought to be promising treatments for neuropathic pain. Whether osthole can alleviate neuropathic pain through astrocytes has not been elucidated in detail. In this study, CCI surgery was used to establish the neuropathic pain model in mice. The CCI mice were treated with osthole (5, 10, or 20 mg/kg/day) for 14 days in vivo. Mechanical allodynia and heat hyperalgesia were measured to evaluate the therapeutic effect of osthole. In mechanism research, the activation of astrocytes; the protein expression of P2Y1R and p-JNK in astrocytes; the release of inflammatory factors; the variations in mEPSPs and eEPSPs; and the levels of GluA1, GluN2B, p-ERK, p-CREB and c-Fos in neurons were observed. The P2Y1R inhibitor MRS2179 and the p-JNK inhibitor SP600125 were used to demonstrate how osthole works in neuropathic pain. In addition, astrocytes and neurons were used to estimate the direct effect of osthole on astrocyte-neuron interactions and signal transmission in vitro. Our findings suggest that osthole treatment obviously relieved mechanical allodynia and heat hyperalgesia in CCI mice. P2Y1R is involved in CCI-induced pain hypersensitivity, and P2Y1R is required for osthole-induced p-JNK downregulation in the spinal cord. Osthole inhibited astrocyte activation and reduced inflammatory factor expression. After osthole treatment, mEPSP frequency and eEPSP amplitude were decreased in spinal lamina I-II neurons. Downstream signaling molecules such as pGluA1, pGluN2B, p-ERK, p-CREB and c-Fos were also reduced very quickly in osthole-treated neuralgic mice. Our conclusion is that osthole alleviates neuropathic pain in mice via the P2Y1-receptor-dependent JNK signaling pathway in spinal astrocytes, and osthole could be considered a potential pharmacotherapy to alleviate neuropathic pain.


Neuroprotective effects of protocatechuic aldehyde through PLK2/p-GSK3β/Nrf2 signaling pathway in both in vivo and in vitro models of Parkinson's disease.

  • Chao Guo‎ et al.
  • Aging‎
  • 2019‎

Mitochondrial dysfunction and oxidative damage are closely related to the pathogenesis of Parkinson's disease (PD). The pharmacological mechanism of protocatechuic aldehyde (PCA) for PD treatment have retained unclear. The purposes of the present study were to clarify the neuroprotective effects of post-treatment of PCA for PD treatment by mitigating mitochondrial dysfunction and oxidative damage, and to further determine whether its effects were mediated by the polo-like kinase 2/phosphorylated glycogen synthase kinase 3 β/nuclear factor erythroid-2-related factor 2 (PLK2/p-GSK3β/Nrf2) pathways. We found that PCA improved 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced behavioral deficits and dopaminergic cell loss. Moreover, PCA increased the expressions of PLK2, p-GSK3β and Nrf2, following the decrease of α-synuclein (α-Syn) in MPTP-intoxicated mice. Cell viability was increased and the apoptosis rate was reduced by PCA in 1-methyl-4-phenylpyridinium iodide (MPP+)-incubated cells. Mitochondrial membrane potential (MMP), mitochondrial complex I activity and reactive oxygen species (ROS) levels in MPP+-incubated cells were also ameliorated by treatment with PCA. The neuroprotective effects of PCA were abolished by inhibition or knockdown of PLK2, whereas overexpression of PLK2 strengthened the protection of PCA. Furthermore, GSK3β and Nrf2 were involved in PCA-induced protection. These results indicated that PCA has therapeutic effects on PD by the PLK2/p-GSK3β/Nrf2 pathway.


RPP30, a transcriptional regulator, is a potential pathogenic factor in glioblastoma.

  • Guanzhang Li‎ et al.
  • Aging‎
  • 2020‎

Old age has been demonstrated to be a risk factor for GBM, but the underlying biological mechanism is still unclear. We designed this study intending to determine a mechanistic explanation for the link between age and pathogenesis in GBM.


Association between SOD2 V16A variant and urological cancer risk.

  • Li-Feng Zhang‎ et al.
  • Aging‎
  • 2020‎

The correlation between superoxide dismutase 2 (SOD2) V16A variant and urological cancer susceptibility has been widely studied, however, with divergent results.


EGFR-specific CAR-T cells trigger cell lysis in EGFR-positive TNBC.

  • Yan Liu‎ et al.
  • Aging‎
  • 2019‎

Triple-negative breast cancer (TNBC) is an aggressive cancer subtype for which effective therapies are lacking. Epidermal growth factor receptor (EGFR) is overexpressed in various types of TNBC cells, and several EGFR-specific immunotherapies have been used to treat cancer patients. Chimeric antigen receptor engineered T (CAR-T) cells have also been used as cancer therapies. In this study, we generated two types of EGFR-specific CAR-modified T cells using lentiviral vectors with DNA sequences encoding the scFv regions of two anti-EGFR antibodies. The cytotoxic and antitumor effects of these CAR-modified T cells were examined in cytokine release and cytotoxicity assays in vitro and in tumor growth assays in TNBC cell line- and patient-derived xenograft mouse models. Both types of EGFR-specific CAR-T cells were activated by high-EGFR-expressing TNBC cells and specifically triggered TNBC cell lysis in vitro. Additionally, the CAR-T cells inhibited growth of cell-line- and patient-derived xenograft TNBC tumors in mice. These results suggest that EGFR-specific CAR-T cells might be a promising therapeutic strategy in patients with high-EGFR-expressing TNBC.


Lymphocyte may be a reference index of the outcome of cancer patients with COVID-19.

  • Wei Zhang‎ et al.
  • Aging‎
  • 2021‎

The novel coronavirus infectious disease (COVID-19) is an international concern as it spreads through human populations and across national and international borders.


TYRO3 facilitates cell growth and metastasis via activation of the Wnt/β-catenin signaling pathway in human gastric cancer cells.

  • Dehu Chen‎ et al.
  • Aging‎
  • 2020‎

It has become increasingly important to identify valuable therapeutic targets to improve the prognosis of cancer patients. Although emerging evidence has suggested TYRO3 as a potential therapeutic target in various types of cancers, less is known about its role in gastric cancer (GC) development. Herein, we investigated the functional and molecular mechanisms by which TYRO3 influenced GC. TYRO3 mRNA and protein were evaluated by quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry. Other methods including stable transfection of TYRO3 into GC cells, wound healing, Transwell assays, CCK-8 assays, colony formation assays, immunocytochemistry in vitro, and tumorigenesis in vivo were also conducted. Our results indicated that high levels of TYRO3 significantly correlated with clinical metastasis and poor prognoses in patients with GC. In addition, TYRO3 silencing distinctively suppressed GC cell growth, invasion, and metastasis both in vitro and in vivo. Conversely, TYRO3 overexpression led to the opposite effects. Mechanistic analyses revealed that the Wnt/β-catenin signaling pathway might be involved in TYRO3-facilitated GC cell behavior. Collectively, we demonstrated that elevated TYRO3 expression contributed to GC cell growth and metastasis via the Wnt/β-catenin pathway, suggesting a novel therapeutic target for GC.


Identifying lncRNA-miRNA-mRNA networks to investigate Alzheimer's disease pathogenesis and therapy strategy.

  • Nana Ma‎ et al.
  • Aging‎
  • 2020‎

Alzheimer's disease (AD), the most common cause of dementia, leads to neuronal damage and deterioration of cognitive functions in aging brains. There is evidence suggesting the participation of noncoding RNAs in AD-associated pathophysiology. A potential linkage between AD and lncRNA-associated competing endogenous RNA (ceRNA) networks has been revealed. Nevertheless, there are still no genome-wide studies which have identified the lncRNA-associated ceRNA pairs involved in AD. For this reason, deep RNA-sequencing was performed to systematically investigate lncRNA-associated ceRNA mechanisms in AD model mice (APP/PS1) brains. Our results identified 487, 89, and 3,025 significantly dysregulated lncRNAs, miRNAs, and mRNAs, respectively, and the most comprehensive lncRNA-associated ceRNA networks to date are constructed in the APP/PS1 brain. GO analysis revealed the involvement of the identified networks in regulating AD development from distinct origins, such as synapses and dendrites. Following rigorous selection, the lncRNA-associated ceRNA networks in this AD mouse model were found to be mainly involved in synaptic plasticity as well as memory (Akap5) and regulation of amyloid-β (Aβ)-induced neuroinflammation (Klf4). This study presents the first systematic dissection of lncRNA-associated ceRNA profiles in the APP/PS1 mouse brain. The identified lncRNA-associated ceRNA networks could provide insights that facilitate AD diagnosis and future treatment strategies.


CircUBAP2-mediated competing endogenous RNA network modulates tumorigenesis in pancreatic adenocarcinoma.

  • Rongjie Zhao‎ et al.
  • Aging‎
  • 2019‎

We investigated the role of the competing endogenous RNA (ceRNA) network in the development and progression of pancreatic adenocarcinoma (PAAD). We analyzed the expression profiles of PAAD and normal pancreatic tissues from multiple GEO databases and identified 457 differentially expressed circular RNAs (DEcircRNAs), 19 microRNAs (DEmiRNAs) and 1993 mRNAs (DEmRNAs). We constructed a ceRNA network consisting of 4 DEcircRNAs, 3 DEmiRNAs and 149 DEmRNAs that regulates the NF-kappa B, PI3K-Akt, and Wnt signaling pathways. We then identified and validated five hub genes, CXCR4, HIF1A, ZEB1, SDC1 and TWIST1, which are overexpressed in PAAD tissues. The expression of CXCR4, HIF1A, ZEB1, and SDC1 in PAAD was regulated by circ-UBAP2 and hsa-miR-494. The expression of CXCR4 and ZEB1 correlated with the levels of M2 macrophages, T-regulatory cells (Tregs) and exhausted T cells in the PAAD tissues. The expression of CXCR4 and ZEB1 positively correlated with the expression of CTLA-4 and PD-1. This suggests that CXCR4 and ZEB1 proteins inhibit antigen presentation and promote immune escape mechanisms in PAAD cells. In summary, our data suggest that the circUBAP2-mediated ceRNA network modulates PAAD by regulating the infiltration and function of immune cells.


Protective effect of DLX6-AS1 silencing against cerebral ischemia/reperfusion induced impairments.

  • Xiamin Hu‎ et al.
  • Aging‎
  • 2020‎

In the present study, we investigated the role of lncRNA mus distal-less homeobox 6 antisense 1 (DLX6-AS1) during cerebral impairment induced by stroke. DLX6-AS1 levels were upregulated during ischemia/reperfusion (I/R) and downregulation of DLX6-AS1 reduced acute injury and ameliorated long-term neurological impairments induced by cerebral I/R in mice. Additionally, silencing of DLX6-AS1 significantly decreased the neuronal apoptosis in vivo and in vitro. Furthermore, inhibition of miRNA-149-3p led to enhance the apoptosis, which confirmed that DLX6-AS1 could sponge miR-149-3p. Finally, BOK was predicted to be the target of miR-149-3p using TargetScanVert software. And the silencing of DLX6-AS1 inhibited BOK expression both in vivo and in vitro, which was reversed by a miR-149-3p inhibitor. At meantime, BOK promoted OGD/R induced apoptosis in N2a cells. Therefore, this suggests that miR-149-3p sponging by DLX6-AS1 may lead to cerebral neuron I/R-induced impairments through upregulation of apoptotic BOK activity, which offers a new approach to the treatment of stroke impairment.


Construction and validation of an immunity-related prognostic signature for breast cancer.

  • Tao Zhu‎ et al.
  • Aging‎
  • 2020‎

Breast cancer is one of the most lethal malignancies among women, and understanding the effects of host immunity on disease progression offers the potential to improve immunotherapies against it. Here, we constructed an immunity-related gene (IRG)-based prognostic signature to stratify breast cancer patients and predict their survival. We identified differentially-expressed genes by analyzing the breast cancer transcriptome data from The Cancer Genome Atlas. Univariate Cox regression revealed 179 survival-correlated IRGs, 12 of which we used to construct an immunity-based prognostic signature that stratified breast cancer patients into high- and low-risk groups. The signature was an independent predictor for survival and was validated in an independent dataset. We also investigated the correlations between our prognostic signature and immune infiltrates and found that signature-derived risk scores correlated negatively with infiltration of B cells, CD4+ T cells, CD8+ T cells, neutrophils and dendritic cells. Our results show that the proposed prognostic signature reflects the tumor immune microenvironment, which makes it a potential indicator for survival that warrants further research to assess its clinical utility.


Aspirin alleviates hepatic fibrosis by suppressing hepatic stellate cells activation via the TLR4/NF-κB pathway.

  • Yan Liu‎ et al.
  • Aging‎
  • 2020‎

Hepatic fibrosis arises from a sustained wound-healing response to chronic liver injury. Because the occurrence and development of hepatic fibrosis is always associated with chronic inflammation, controlling inflammation within the liver may be an effective means of controlling the development and progression of hepatic fibrosis. Aspirin is a non-steroidal anti-inflammatory drug used to relieve both inflammatory symptoms and pain. The results of our study showed that aspirin significantly attenuated hepatic inflammation and fibrosis. Aspirin effectively inhibited the activation and proliferation of hepatic stellate cells (HSCs), which led to downregulation of inflammatory factors, including IL-6 and TNF-α in those cells. Aspirin also downregulated expression of Toll-like receptor-4 (TLR4) on HSCs, as well as its downstream mediators, MyD88 and NF-κB. The results of our study demonstrate aspirin's potential to inhibit the development of hepatic fibrosis and the molecular mechanism by which it acts. They suggest aspirin may be an effective therapeutic agent for the treatment of hepatic fibrosis.


Interleukin-17D promotes lung cancer progression by inducing tumor-associated macrophage infiltration via the p38 MAPK signaling pathway.

  • Zhenzhen Lin‎ et al.
  • Aging‎
  • 2022‎

Cancer immunoediting is defined as the integration of the immune system's dual host-protective and tumor-promoting roles, including three phases: elimination, equilibrium, and escape. Immune selective pressure causes tumor cells to lose major histocompatibility complex expression or acquire immunosuppressive gene expression, which promotes tumor immune evasion and tumor progression. Interleukin-17D (IL-17D), a member of the IL-17 family of cytokines, plays an important role in the host defense against infection and inflammation. However, the role of IL-17D in the progression of lung cancer remains unclear. In this study, we found that IL-17D was highly expressed in human lung cancer, and increased IL-17D expression was associated with tumor stage and short overall survival. IL-17D overexpression significantly promoted tumor growth in subcutaneous xenograft mouse models but only slightly affected cell proliferation in vitro. Using flow cytometry, we found that IL-17D overexpression enhances the recruitment of tumor-associated macrophages to the tumor microenvironment. Based on the expression profile of IL17D-overexpressing A549 cells, we found that IL-17D increased the expression levels of macrophage polarization- and recruitment-related genes through the MAPK signaling pathway. Moreover, inhibition of the p38 pathway blocked macrophage infiltration induced by IL-17D. These results suggest that IL-17D regulates the tumor immune microenvironment via the p38 MAPK signaling pathway, highlighting IL-17D as a potential therapeutic target for lung cancer.


The TLR4/NF-κB/MAGI-2 signaling pathway mediates postoperative delirium.

  • Wei Zhang‎ et al.
  • Aging‎
  • 2022‎

To evaluate the TLR4/NF-κB/MAGI-2 signaling pathway in postoperative delirium.


Hypoxic pretreatment of adipose-derived stem cell exosomes improved cognition by delivery of circ-Epc1 and shifting microglial M1/M2 polarization in an Alzheimer's disease mice model.

  • Haining Liu‎ et al.
  • Aging‎
  • 2022‎

Alzheimer's disease (AD) is the most common dementia in the world. Increasing evidence has shown that exosomes from hypoxic pretreated adipose-derived stem cells (ADSCs) could be an effective cognitive function therapeutic in AD-associated pathophysiology. However, their role and regulatory mechanism remain largely unknown. High-throughput sequencing was used to identify differentially expressed circRNAs from ADSCs or hypoxia pretreated ADSC exosomes. Luciferase reporter assays and RT-qPCR were used to investigate the relationships between circ-Epc1, miR-770-3p, and TREM2. APP/PS1 double transgenic AD model mice were then used to study therapeutic effects regarding circ-Epc1 in ADSC exosomes. BV2 cells were used to show the regulatory relationships between circ-Epc1, miR-770-3p, and TREM2 and to show how these interactions modulated phenotypic transformations and inflammatory cytokine expressions in microglia. The results showed that exosomes from hypoxia pretreated ADSCs had a good therapeutic effect on improving cognitive functions by decreasing neuronal damage in the hippocampus. High-throughput sequencing showed that circ-Epc1 played an important role in hypoxia-pretreated ADSC exosomes regarding their ability to improve cognitive functions. Luciferase reporter assays showed that TREM2 and miR-770-3p were downstream targets of circ-Epc1. Overexpressing miR-770-3p or downregulating TREM2 reversed the effects of circ-Epc1 on M2 microglia during lipopolysaccharide treatment. In vivo experiments showed that circ-Epc1-containing ADSC exosomes increased the therapeutic effect of exosomes by improving cognitive function, decreasing neuronal damage, and shifting hippocampal microglia from the M1 polarization to the M2 polarization stages. Taken together, the data show that hypoxic pretreatment of ADSC exosomes improved cognition by delivery of circ-Epc1 and by shifting microglial M1/M2 polarization in an AD mouse model.


Apigenin-7-O-β-D-(-6"-p-coumaroyl)-glucopyranoside treatment elicits a neuroprotective effect through GSK-3β phosphorylation-mediated Nrf2 activation.

  • Jingwen Wang‎ et al.
  • Aging‎
  • 2020‎

The current study was designed to seek the role of the glycogen synthase kinase-3β (GSK-β)-regulated NF-E2-related factor 2 (Nrf2) pathway in the antioxidant effect induced by Apigenin-7-O-β-D-(-6"-p-coumaroyl)-glucopyranoside (APG). Rat primary cultured cortical neurons were challenged by oxygen and glucose deprivation/reoxygenation (OGD/R) and then treated with APG. Cell viability, phosphorylation of GSK-β at Ser9 and nuclear expression of Nrf2 were measured. Male Sprague Dawley rats challenged by 2-h middle cerebral artery occlusion were treated with 50 mg/kg APG, and the neurological score, infarct volume, phosphorylation of GSK-3β and nuclear expression of Nrf2 were analyzed. The neuroprotective effect of APG and the expression levels of antioxidant enzymes and oxidative products were also examined in the presence and absence of Nrf2-siRNA and PI3K inhibitors. APG reduced the apoptotic proportion, attenuated LDH release and increased cell viability, and in vivo, APG improved neurological scores and reduced infarct volume. APG increased GSK-3β phosphorylation and Nrf2 nuclear translocation, while these effects were prevented by PI3K inhibitors or Nrf2-siRNA treatment in both OGD/R cell cultures and ischemic/reperfusion rats. These findings reveal that GSK-3β phosphorylation-mediated Nrf2 activation is involved in the neuroprotective effect of APG.


MicroRNA-335/ID4 dysregulation predicts clinical outcome and facilitates leukemogenesis by activating PI3K/Akt signaling pathway in acute myeloid leukemia.

  • Jing-Dong Zhou‎ et al.
  • Aging‎
  • 2019‎

MircoRNA-335 (miR-335) has been reported as a significant cancer-associated microRNA, which was often epigenetically silenced and acted as a tumor suppressor gene in diverse human solid tumors. Conversely, recent studies show that miR-335 overexpression was identified in both adult and pediatric acute myeloid leukemia (AML), suggesting that it might play an oncogenic role of miR-335 in AML. However, the role of miR-335 during leukemogenesis remains to be elucidated. MiR-335/ID4 expression was detected by real-time quantitative PCR and/or western blot. Survival analysis was performed to explore the association between miR-335/ID4 expression and the prognosis, and further validated by public databases. Gain-of-function experiments determined by cell proliferation, apoptosis, and differentiation were conducted to investigate the biological functions of miR-335/ID4. Herein, we found that miR-335 expression, independent of its methylation, was significantly increased and negatively correlated with reduced ID4 expression in AML. Moreover, aberrant miR-335/ID4 expression independently affected chemotherapy response and leukemia-free/overall survival in patients with AML. Gain-of-function experiments in vitro showed the oncogenic role of miR-335 by affecting cell apoptosis and proliferation in AML, and could be rescued by ID4 restoration. Mechanistically, we identified and verified that miR-335/ID4 contributed to leukemogenesis through activating PI3K/Akt signaling pathway. Collectively, aberrant miR-335/ID4 expression was an independent prognostic biomarker in AML. MiR-335/ID4 dysregulation facilitated leukemogenesis through the activation of PI3K/Akt signaling pathway.


Ubiquitin-specific protease 4 promotes metastasis of hepatocellular carcinoma by increasing TGF-β signaling-induced epithelial-mesenchymal transition.

  • Chan Qiu‎ et al.
  • Aging‎
  • 2018‎

Invasion and metastasis are the main cause of recurrence and death in advanced hepatocellular carcinoma (HCC). Revealing the mechanisms of HCC metastasis is important for developing new therapeutic approaches and reducing patient mortality. Ubiquitin specific protease 4 (USP4), is involved in tumorigenesis by deubiquitinating some important oncogenic proteins and impacting their degradation. In the present study, we found that USP4 was significantly upregulated in HCC tumor tissues and the high expression of USP4 was associated with distant metastasis and poor survival in patients. Using gene interference, we demonstrated that USP4 knockdown significantly inhibited HCC cell migration and invasion in vitro, and USP4 overexpression had the opposite results. In vivo, we also found that USP4 knockdown obviously blocked HCC cell metastasis. Mechanistically, we revealed that USP4 interacted directly with and deubiquitinated TGF-β receptor type I (TGFR-1) to activate the TGF-β signaling pathway, and subsequently induced the Epithelial-Mesenchymal Transition (EMT) in HCC cells. Taken together, our results elucidate that USP4 is highly expressed in HCC and promotes the tumor invasion and metastasis, the underlying mechanism is that USP4 directly interacts with and deubiquitinates TGFR-1 to increase TGF-β signaling-Induced EMT. These results could provide a new therapeutic target for the treatment of HCC.


Analysis of immune-related signatures of lung adenocarcinoma identified two distinct subtypes: implications for immune checkpoint blockade therapy.

  • Qinghua Wang‎ et al.
  • Aging‎
  • 2020‎

Immune checkpoint blockade (ICB) therapies have revolutionized the treatment of human cancers including lung adenocarcinoma (LUAD). However, our understanding of the immune subtyping of LUAD and its association with clinical response of immune checkpoint inhibitor remains incomplete. Here we performed molecular subtyping and association analysis of LUAD from the Cancer Genome Atlas (TCGA) and validated findings from TCGA cohort in 9 independent validation cohorts. We conducted consensus molecular subtyping with nonnegative matrix factorization (NMF). Potential response of ICB therapy was estimated with Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. We identified 2 distinct subtypes of LUAD in TCGA cohort that were characterized by significantly different survival outcomes (i.e., high- and low-risk subtypes). The high-risk subtype was featured by lower TIDE score, upregulation of programmed death-ligand 1 (PD-L1) expression, and higher tumor mutation burden (TMB). The high-risk subtype also harbored significantly elevated cell cycle modulators CDK4/CDK6 and TP53 mutation. These observations were validated in 9 independent LUAD cohorts. Our findings suggest that immune checkpoint blockade therapy may be efficacious for high-risk subtype of LUAD patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: