Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Identification of Key Genes of Human Advanced Diabetic Nephropathy Independent of Proteinuria by Transcriptome Analysis.

  • Fanghao Cai‎ et al.
  • BioMed research international‎
  • 2020‎

Diabetic nephropathy (DN) is the leading cause of ESRD. Emerging evidence indicated that proteinuria may not be the determinant of renal survival in DN. The aim of the current study was to provide molecular signatures apart from proteinuria in DN by an integrative bioinformatics approach.


A Pan-Cancer Analysis of Clinical Prognosis and Immune Infiltration of CKS1B in Human Tumors.

  • Yan Jia‎ et al.
  • BioMed research international‎
  • 2021‎

Although more and more evidence supports CDC28 protein kinase subunit 1B (CKS1B) is involved significantly in the development of human cancers, most of the researches have focused on a single disease, and pan-cancer studies conducted from a holistic perspective of different tumor sources have not been reported yet. Here, for the first time, we investigated the potential oncogenic and prognostic role of CKS1B across 33 tumors based on public databases and further verified it in a small scale by RNA sequencing or quantitative real-time PCR. CKS1B was generally highly expressed in a majority of tumors and had a notable correlation with the prognosis of patients, but its prognostic significance in different tumors was not exactly the same. In addition, CKS1B expression was also closely related to the infiltration of cancer-associated fibroblasts in tumors such as breast invasive carcinoma, kidney chromophobe, lung adenocarcinoma, and tumor-infiltrating lymphocytes in tumors such as glioblastoma multiforme, bladder urothelial carcinoma, and brain lower grade glioma. Moreover, reduced CKS1B methylation was observed in certain tumors, for example, adrenocortical carcinoma. Cell cycle and kinase activity regulation and PI3K-Akt signaling pathway were found to be involved in the functional mechanism of CKS1B. In conclusion, our first pan-cancer analysis of CKS1B contributes to a better overall understanding of CKS1B and may provide a new target for future cancer therapy.


Bioinformatics Analysis of Spike Proteins of Porcine Enteric Coronaviruses.

  • Yan Jia‎ et al.
  • BioMed research international‎
  • 2021‎

This article is aimed at analyzing the structure and function of the spike (S) proteins of porcine enteric coronaviruses, including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) by applying bioinformatics methods. The physical and chemical properties, hydrophilicity and hydrophobicity, transmembrane region, signal peptide, phosphorylation and glycosylation sites, epitope, functional domains, and motifs of S proteins of porcine enteric coronaviruses were predicted and analyzed through online software. The results showed that S proteins of TGEV, PEDV, SADS-CoV, and PDCoV all contained transmembrane regions and signal peptide. TGEV S protein contained 139 phosphorylation sites, 24 glycosylation sites, and 53 epitopes. PEDV S protein had 143 phosphorylation sites, 22 glycosylation sites, and 51 epitopes. SADS-CoV S protein had 109 phosphorylation sites, 20 glycosylation sites, and 43 epitopes. PDCoV S protein had 124 phosphorylation sites, 18 glycosylation sites, and 52 epitopes. Moreover, TGEV, PEDV, and PDCoV S proteins all contained two functional domains and two motifs, spike_rec_binding and corona_S2. The corona_S2 consisted of S2 subunit heptad repeat 1 (HR1) and S2 subunit heptad repeat 2 (HR2) region profiles. Additionally, SADS-CoV S protein was predicted to contain only one functional domain, the corona_S2. This analysis of the biological functions of porcine enteric coronavirus spike proteins can provide a theoretical basis for the design of antiviral drugs.


HAND2-AS1 Works as a ceRNA of miR-3118 to Suppress Proliferation and Migration in Breast Cancer by Upregulating PHLPP2.

  • Guolei Dong‎ et al.
  • BioMed research international‎
  • 2020‎

Large quantities of long noncoding RNAs (lncRNAs) have been verified to exert vital functions in the process of breast cancer (BC). lncRNA heart and neural crest derivatives expressed 2-antisense RNA 1 (HAND2-AS1) was reported to suppress the development of several cancers. However, its detailed function in BC remained unclear. In the current study, HAND2-AS1 was discovered to be low expressed in BC cell lines, and overexpression of HAND2-AS1 could repress proliferation, migration, and invasion but facilitate apoptosis in BC cells. Moreover, HAND2-AS1 was found to act as a sponge of miR-3118 which was detected to be upregulated in BC cell lines. miR-3118 depletion could constrict the progression of BC. HAND-AS1 hindered the course of BC by reducing the expression of miR-3118. Besides, PHLPP2 was treated as a downstream target of miR-3118 under the selection of RNA pull-down assays. HAND2-AS1 inhibited the process of BC by enhancing expression of PHLPP2. In summary, our study testified that HAND2-AS1 suppressed BC growth by targeting the miR-3118/PHLPP2 axis, indicating that HAND2-AS1 could be regarded as a potential target for BC treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: