Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Clinical significance of YAP1 activation in head and neck squamous cell carcinoma.

  • Young-Gyu Eun‎ et al.
  • Oncotarget‎
  • 2017‎

By analyzing the genomic data of head and neck squamous cell cancer (HNSCC), we investigated clinical significance of YAP1 activation. Copy number and mRNA expression of YAP1 were analyzed together to assess clinical relevance of YAP1 activation in HNSCC. The clinical significance of YAP1 activation was further validated in four independent test cohorts. We also assessed the correlation of YAP1 activation with genomic alterations such as copy number alteration, somatic mutation, and miRNA expression. The YAP1-activated (YA) subgroup showed worse prognosis for HNSCC as tested and validated in five cohorts. In a multivariate risk analysis, the YAP1 signature was the most significant predictor of overall survival. The YAP1-inactivated (YI) subgroup was associated with HPV-positive status. In multiplatform analysis, YA tumors had gain of EGFR and SNAI2; loss of tumor-suppressor genes such as CSMD1, CDKN2A, NOTCH1, and SMAD4; and high mutation rates of TP53 and CDKN2A. YI tumors were characterized by gain of PIK3CA, SOX2, and TP63; deletion of 11q23.1; and high mutation rates of NFE2L2, PTEN, SYNE1, and NSD1. YA tumors also showed weaker immune activity as reflected in low IFNG composite scores and YAP1 activity is negatively associated with potential response to treatment of pembrolizumab. In conclusion, activation of YAP1 is associated with worse prognosis of patients with HNSCC and potential resistance to immunotherapy.


Epigenetic silencing of the non-coding RNA nc886 provokes oncogenes during human esophageal tumorigenesis.

  • Hyun-Sung Lee‎ et al.
  • Oncotarget‎
  • 2014‎

nc886 (= vtRNA2-1 or pre-miR-886) is a recently discovered noncoding RNA that is a cellular PKR (Protein Kinase RNA-activated) ligand and repressor. nc886 has been suggested to be a tumor suppressor, solely based on its expression pattern and genomic locus. In this report, we have provided sufficient evidence that nc886 is a putative tumor suppressor in esophageal squamous cell carcinoma (ESCC). In 84 paired specimens from ESCC patients, nc886 expression is significantly lower in tumors than their normal adjacent tissues. More importantly, decreased expression of nc886 is significantly associated with shorter recurrence-free survival of the patients. Suppression of nc886 is mediated by CpG hypermethylation of its promoter, as evidenced by its significant negative correlation to nc886 expression in ESCC tumors and by induced expression of nc886 upon demethylation of its promoter. Knockdown of nc886 and consequent PKR activation induce FOS and MYC oncogenes as well as some inflammatory genes including oncogenic NF-κB. When ectopically expressed, nc886 inhibits proliferation of ESCC cells, further demonstrating that nc886 could be a tumor suppressor. All these findings implicate nc886 as a novel, putative tumor suppressor that is epigenetically silenced and regulates the expression of oncogenes in ESCC.


Increased liver carcinogenesis and enrichment of stem cell properties in livers of Dickkopf 2 (Dkk2) deleted mice.

  • Thorsten Maass‎ et al.
  • Oncotarget‎
  • 2016‎

Dkk2 a antagonist of the Wnt/β-catenin-signaling pathway was shown to be silenced in diverse cancers. More recent data indicate that Dkk family members may also possess functions independent of Wnt-signaling during carcinogenesis. The detailed biological function of Dkks and its relevance for liver cancer is unknown. We analyzed the effects of a genetic deletion of Dkk2 (Dkk2-/-) in a hepatocarcinogenesis model using DEN/Phenobarbital. Untreated Dkk2-/- animals, showed considerable atypia with variation of hepatocyte size and chromatin density. In livers of Dkk2-/- mice nodule formation was seen at 9 months of age with focal loss of trabecular architecture and atypical hepatocytes and after DEN induction Dkk2-/- mice developed significantly more liver tumors compared to controls. Whole transcriptome analysis of untreated Dkk2-/- liver tissue revealed a Dkk2-dependent genetic network involving Wnt/β-Catenin but also multiple additional oncogenic factors, such as e.g. Pdgf-b, Gdf-15 and Hnf4a. Dkk2-/- tumor cells showed a significant deregulation of stemness genes associated with enhanced colony forming properties. Integration of the Dkk2-/- signature into human data was strongly associated with patients survival. Dkk2 deletion results in alterations of liver morphology leading to an increased frequency of liver cancer. The associated genetic changes included factors not primarily related to Wnt/β-Catenin-signaling and correlated with the clinical outcome of HCC-patients.


Growth-stimulatory activity of TIMP-2 is mediated through c-Src activation followed by activation of FAK, PI3-kinase/AKT, and ERK1/2 independent of MMP inhibition in lung adenocarcinoma cells.

  • Han Ie Kim‎ et al.
  • Oncotarget‎
  • 2015‎

Tissue inhibitors of metalloproteinases (TIMPs) control extracellular matrix (ECM) homeostasis by inhibiting the activity of matrix metalloproteinases (MMPs), which are associated with ECM turnover. Recent studies have revealed that TIMPs are implicated in tumorigenesis in both MMP-dependent and MMP-independent manners. We examined a mechanism by which TIMP-2 stimulated lung adenocarcinoma cell proliferation, independent of MMP inhibition. The stimulation of growth by TIMP-2 in A549 cells required c-Src kinase activation. c-Src kinase activity, induced by TIMP-2, concomitantly increased FAK, phosphoinositide 3-kinase (PI3-kinase)/AKT, and ERK1/2 activation. Selective knockdown of integrin α3β1, known as a TIMP-2 receptor, did not significantly change TIMP-2 growth promoting activity. Furthermore, we showed that high TIMP-2 expression in lung adenocarcinomas is associated with a worse prognosis from multiple cohorts, especially for stage I lung adenocarcinoma. Through integrated analysis of The Cancer Genome Atlas data, TIMP-2 expression was significantly associated with the alteration of driving genes, c-Src activation, and PI3-kinase/AKT pathway activation. Taken together, our results demonstrate that TIMP-2 stimulates lung adenocarcinoma cell proliferation through c-Src, FAK, PI3-kinase/AKT, and ERK1/2 pathway activation in an MMP-independent manner.


An 8-gene signature for prediction of prognosis and chemoresponse in non-small cell lung cancer.

  • Muhammad Shahid‎ et al.
  • Oncotarget‎
  • 2016‎

Identification of a potential gene signature for improved diagnosis in non-small cell lung cancer (NSCLC) patient is necessary. Here, we aim to establish and validate the prognostic efficacy of a gene set that can predict prognosis and benefits of adjuvant chemotherapy (ACT) in NSCLC patients from various ethnicities. An 8-gene signature was calculated from the gene expression of 181 patients using univariate Cox proportional hazard regression analysis. The prognostic value of the signature was robustly validated in 1,477 patients from five microarray independent data sets and one RNA-seq data set. The 8-gene signature was identified as an independent predictor of patient survival in the presence of clinical parameters in univariate and multivariate analyses [hazard ratio (HR): 2.84, 95% confidence interval CI (1.74-4.65), p=3.06e-05, [HR] 2.62, 95% CI (1.51-4.53), p=0.001], respectively. Subset analysis demonstrated that the 8-gene signature could identify high-risk patients in stage II-III with improved survival from ACT [(HR) 1.47, 95% CI (1.01-2.14), p=0.044]. The 8-gene signature also stratified risk groups in EGFR-mutated and wild-type patients. In conclusion, the 8-gene signature is a strong and independent predictor that can significantly stratify patients into low- and high-risk groups. Our gene signature also has the potential to predict patients in stage II-III that are likely to benefit from ACT.


Prognostic value of a 92-probe signature in breast cancer.

  • Salima Akter‎ et al.
  • Oncotarget‎
  • 2015‎

Clinical applications of gene expression signatures in breast cancer prognosis still remain limited due to poor predictive strength of single training datasets and appropriate invariable platforms. We proposed a gene expression signature by reducing baseline differences and analyzing common probes among three recent Affymetrix U133 plus 2 microarray data sets. Using a newly developed supervised method, a 92-probe signature found in this study was associated with overall survival. It was robustly validated in four independent data sets and then repeated on three subgroups by incorporating 17 breast cancer microarray datasets. The signature was an independent predictor of patients' survival in univariate analysis [(HR) 1.927, 95% CI (1.237-3.002); p < 0.01] as well as multivariate analysis after adjustment of clinical variables [(HR) 7.125, 95% CI (2.462-20.618); p < 0.001]. Consistent predictive performance was found in different multivariate models in increased patient population (p = 0.002). The survival signature predicted a late metastatic feature through 5-year disease free survival (p = 0.006). We identified subtypes within the lymph node positive (p < 0.001) and ER positive (p = 0.01) patients that best reflected the invasive breast cancer biology. In conclusion using the Common Probe Approach, we present a novel prognostic signature as a predictor in breast cancer late recurrences.


Prognostic value and their clinical implication of 89-gene signature in glioma.

  • Muhammad Shahid‎ et al.
  • Oncotarget‎
  • 2016‎

Gliomas are the most common and aggressive primary tumors in adults. The current approaches, such as histological classification and molecular genetics, have limitation in prediction of individual therapeutic outcomes due to heterogeneity within the tumor groups. Recent studies have proposed several gene signatures to predict glioma's prognosis. However, most of the gene expression profiling studies have been performed on relatively small number of patients and combined probes from diverse microarray chips. Here, we identified prognostic 89 common genes from diverse microarray chips. The 89-gene signature classified patients into good and bad prognostic groups which differed in the overall survival significantly, reflecting the biological characteristics and heterogeneity. The robustness and accuracy of the gene signature as an independent prognostic factor was validated in three microarray and one RNA-seq data sets independently. By incorporating into histological classification and molecular marker, the 89-gene signature could further stratify patients with 1p/19q co-deletion and IDH1 mutation. Additionally, subset analyses suggested that the 89-gene signature could predict patients who would benefit from adjuvant chemotherapy. Conclusively, we propose that the 89-gene signature would have an independent and accurate prognostic value for clinical use. This study also offers opportunities for novel targeted treatment of individual patients.


CRC-113 gene expression signature for predicting prognosis in patients with colorectal cancer.

  • Minh Nam Nguyen‎ et al.
  • Oncotarget‎
  • 2015‎

Colorectal cancer (CRC) is the third leading cause of global cancer mortality. Recent studies have proposed several gene signatures to predict CRC prognosis, but none of those have proven reliable for predicting prognosis in clinical practice yet due to poor reproducibility and molecular heterogeneity. Here, we have established a prognostic signature of 113 probe sets (CRC-113) that include potential biomarkers and reflect the biological and clinical characteristics. Robustness and accuracy were significantly validated in external data sets from 19 centers in five countries. In multivariate analysis, CRC-113 gene signature showed a stronger prognostic value for survival and disease recurrence in CRC patients than current clinicopathological risk factors and molecular alterations. We also demonstrated that the CRC-113 gene signature reflected both genetic and epigenetic molecular heterogeneity in CRC patients. Furthermore, incorporation of the CRC-113 gene signature into a clinical context and molecular markers further refined the selection of the CRC patients who might benefit from postoperative chemotherapy. Conclusively, CRC-113 gene signature provides new possibilities for improving prognostic models and personalized therapeutic strategies.


nc886, a non-coding RNA and suppressor of PKR, exerts an oncogenic function in thyroid cancer.

  • Eun Kyung Lee‎ et al.
  • Oncotarget‎
  • 2016‎

nc886 is a recently identified cellular non-coding RNA and its depletion leads to acute cell death via PKR (Protein Kinase RNA-activated) activation. nc886 expression is increased in some malignancies, but silenced in others. However, the precise role of nc886/PKR is controversial: is it a tumor suppressor or an oncogene? In this study, we have clarified the role of nc886 in thyroid cancer by sequentially generating PKR knockout (KO) and PKR/nc886 double KO cell lines from Nthy-ori 3-1, a partially transformed thyroid cell line. Compared to the wildtype, PKR KO alone does not exhibit any significant phenotypic changes. However, nc886 KO cells are less proliferative, migratory, and invasive than their parental PKR KO cells. Importantly, the requirement of nc886 in tumor phenotypes is totally independent of PKR. In our microarray data, nc886 KO suppresses some genes whose elevated expression is associated with poor survival confirmed by data from total of 505 thyroid cancer patients in the Caner Genome Atlas project. Also, the nc886 expression level tends to be elevated and in more aggressively metastatic tumor specimens from thyroid cancer patients. In summary, we have discovered nc886's tumor-promoting role in thyroid cancer which has been concealed by the PKR-mediated acute cell death.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: