Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Allosteric modulation of caspase 3 through mutagenesis.

  • Jad Walters‎ et al.
  • Bioscience reports‎
  • 2012‎

A mutation in the allosteric site of the caspase 3 dimer interface of Val266 to histidine abolishes activity of the enzyme, and models predict that the mutation mimics the action of small molecule allosteric inhibitors by preventing formation of the active site. Mutations were coupled to His266 at two sites in the interface, E124A and Y197C. We present results from X-ray crystallography, enzymatic activity and molecular dynamics simulations for seven proteins, consisting of single, double and triple mutants. The results demonstrate that considering allosteric inhibition of caspase 3 as a shift between discrete 'off-state' or 'on-state' conformations is insufficient. Although His266 is accommodated in the interface, the structural defects are propagated to the active site through a helix on the protein surface. A more comprehensive view of allosteric regulation of caspase 3 requires the representation of an ensemble of inactive states and shows that subtle structural changes lead to the population of the inactive ensemble.


Divergence in DNA Specificity among Paralogous Transcription Factors Contributes to Their Differential In Vivo Binding.

  • Ning Shen‎ et al.
  • Cell systems‎
  • 2018‎

Paralogous transcription factors (TFs) are oftentimes reported to have identical DNA-binding motifs, despite the fact that they perform distinct regulatory functions. Differential genomic targeting by paralogous TFs is generally assumed to be due to interactions with protein co-factors or the chromatin environment. Using a computational-experimental framework called iMADS (integrative modeling and analysis of differential specificity), we show that, contrary to previous assumptions, paralogous TFs bind differently to genomic target sites even in vitro. We used iMADS to quantify, model, and analyze specificity differences between 11 TFs from 4 protein families. We found that paralogous TFs have diverged mainly at medium- and low-affinity sites, which are poorly captured by current motif models. We identify sequence and shape features differentially preferred by paralogous TFs, and we show that the intrinsic differences in specificity among paralogous TFs contribute to their differential in vivo binding. Thus, our study represents a step forward in deciphering the molecular mechanisms of differential specificity in TF families.


PI3K-C2α knockdown decreases autophagy and maturation of endocytic vesicles.

  • Nathan M Merrill‎ et al.
  • PloS one‎
  • 2017‎

Phosphoinositide 3-kinase (PI3K) family members are involved in diverse cellular fates including cell growth, proliferation, and survival. While many molecular details are known about the Class I and III PI3Ks, less is known about the Class II PI3Ks. To explore the function of all eight PI3K isoforms in autophagy, we knock down each gene individually and measure autophagy. We find a significant decrease in autophagy following siRNA-mediated PIK3C2A (encoding the Class 2 PI3K, PI3K-C2α) knockdown. This defective autophagy is rescued by exogenous PI3K-C2α, but not kinase-dead PI3K-C2α. Using confocal microscopy, we probe for markers of endocytosis and autophagy, revealing that PI3K-C2α colocalizes with markers of endocytosis. Though endocytic uptake is intact, as demonstrated by transferrin labeling, PIK3C2A knockdown results in vesicle accumulation at the recycling endosome. We isolate distinct membrane sources and observe that PI3K-C2α interacts with markers of endocytosis and autophagy, notably ATG9. Knockdown of either PIK3C2A or ATG9A/B, but not PI3KC3, results in an accumulation of transferrin-positive clathrin coated vesicles and RAB11-positive vesicles at the recycling endosome. Taken together, these results support a role for PI3K-C2α in the proper maturation of endosomes, and suggest that PI3K-C2α may be a critical node connecting the endocytic and autophagic pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: