Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Autosomal resequence data reveal Late Stone Age signals of population expansion in sub-Saharan African foraging and farming populations.

  • Murray P Cox‎ et al.
  • PloS one‎
  • 2009‎

A major unanswered question in the evolution of Homo sapiens is when anatomically modern human populations began to expand: was demographic growth associated with the invention of particular technologies or behavioral innovations by hunter-gatherers in the Late Pleistocene, or with the acquisition of farming in the Neolithic?


Rare variants of small effect size in neuronal excitability genes influence clinical outcome in Japanese cases of SCN1A truncation-positive Dravet syndrome.

  • Michael F Hammer‎ et al.
  • PloS one‎
  • 2017‎

Dravet syndrome (DS) is a rare, devastating form of childhood epilepsy that is often associated with mutations in the voltage-gated sodium channel gene, SCN1A. There is considerable variability in expressivity within families, as well as among individuals carrying the same primary mutation, suggesting that clinical outcome is modulated by variants at other genes. To identify modifier gene variants that contribute to clinical outcome, we sequenced the exomes of 22 individuals at both ends of a phenotype distribution (i.e., mild and severe cognitive condition). We controlled for variation associated with different mutation types by limiting inclusion to individuals with a de novo truncation mutation resulting in SCN1A haploinsufficiency. We performed tests aimed at identifying 1) single common variants that are enriched in either phenotypic group, 2) sets of common or rare variants aggregated in and around genes associated with clinical outcome, and 3) rare variants in 237 candidate genes associated with neuronal excitability. While our power to identify enrichment of a common variant in either phenotypic group is limited as a result of the rarity of mild phenotypes in individuals with SCN1A truncation variants, our top candidates did not map to functional regions of genes, or in genes that are known to be associated with neurological pathways. In contrast, we found a statistically-significant excess of rare variants predicted to be damaging and of small effect size in genes associated with neuronal excitability in severely affected individuals. A KCNQ2 variant previously associated with benign neonatal seizures is present in 3 of 12 individuals in the severe category. To compare our results with the healthy population, we performed a similar analysis on whole exome sequencing data from 70 Japanese individuals in the 1000 genomes project. Interestingly, the frequency of rare damaging variants in the same set of neuronal excitability genes in healthy individuals is nearly as high as in severely affected individuals. Rather than a single common gene/variant modifying clinical outcome in SCN1A-related epilepsies, our results point to the cumulative effect of rare variants with little to no measurable phenotypic effect (i.e., typical genetic background) unless present in combination with a disease-causing truncation mutation in SCN1A.


Variable patterns of mutation density among NaV1.1, NaV1.2 and NaV1.6 point to channel-specific functional differences associated with childhood epilepsy.

  • Alejandra C Encinas‎ et al.
  • PloS one‎
  • 2020‎

Variants implicated in childhood epilepsy have been identified in all four voltage-gated sodium channels that initiate action potentials in the central nervous system. Previous research has focused on the functional effects of particular variants within the most studied of these channels (NaV1.1, NaV1.2 and NaV1.6); however, there have been few comparative studies across channels to infer the impact of mutations in patients with epilepsy. Here we compare patterns of variation in patient and public databases to test the hypothesis that regions of known functional significance within voltage-gated sodium (NaV) channels have an increased burden of deleterious variants. We assessed mutational burden in different regions of the Nav channels by (1) performing Fisher exact tests on odds ratios to infer excess variants in domains, segments, and loops of each channel in patient databases versus public "control" databases, and (2) comparing the cumulative distribution of variant sites along DNA sequences of each gene in patient and public databases (i.e., independent of protein structure). Patient variant density was concordant among channels in regions known to play a role in channel function, with statistically significant higher patient variant density in S4-S6 and DIII-DIV and an excess of public variants in SI-S3, DI-DII, DII-DIII. On the other hand, channel-specific patterns of patient burden were found in the NaV1.6 inactivation gate and NaV1.1 S5-S6 linkers, while NaV1.2 and NaV1.6 S4-S5 linkers and S5 segments shared patient variant patterns that contrasted with those in NaV1.1. These different patterns may reflect different roles played by the NaV1.6 inactivation gate in action potential propagation, and by NaV1.1 S5-S6 linkers in loss of function and haploinsufficiency. Interestingly, NaV1.2 and NaV1.6 both lack amino acid substitutions over significantly long stretches in both the patient and public databases suggesting that new mutations in these regions may cause embryonic lethality or a non-epileptic disease phenotype.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: