Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR.

  • Guangwei Liu‎ et al.
  • Nature immunology‎
  • 2009‎

Regulatory T cells (T(reg) cells) are critically involved in maintaining immunological tolerance, but this potent suppression must be 'quenched' to allow the generation of adaptive immune responses. Here we report that sphingosine 1-phosphate (S1P) receptor type 1 (S1P1) delivers an intrinsic negative signal to restrain the thymic generation, peripheral maintenance and suppressive activity of T(reg) cells. Combining loss- and gain-of-function genetic approaches, we found that S1P1 blocked the differentiation of thymic T(reg) precursors and function of mature T(reg) cells and affected T(reg) cell-mediated immune tolerance. S1P1 induced selective activation of the Akt-mTOR kinase pathway to impede the development and function of T(reg) cells. Dynamic regulation of S1P1 contributed to lymphocyte priming and immune homeostasis. Thus, by antagonizing T(reg) cell-mediated immune suppression, the lipid-activated S1P1-Akt-mTOR pathway orchestrates adaptive immune responses.


Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation.

  • Benjamin R Marks‎ et al.
  • Nature immunology‎
  • 2009‎

Interleukin 17 (IL-17)-producing CD4(+) helper T cells (T(H)-17 cells) share a developmental relationship with Foxp3(+) regulatory T cells (T(reg) cells). Here we show that a T(H)-17 population differentiates in the thymus in a manner influenced by recognition of self antigen and by the cytokines IL-6 and transforming growth factor-beta (TGF-beta). Like previously described T(H)-17 cells, the T(H)-17 cells that developed in the thymus expressed the transcription factor RORgamma t and the IL-23 receptor. These cells also expressed alpha(4)beta(1) integrins and the chemokine receptor CCR6 and were recruited to the lung, gut and liver. In the liver, these cells secreted IL-22 in response to self antigen and mediated host protection during inflammation. Thus, T(H)-17 cells, like T(reg) cells, can be selected by self antigens in the thymus.


Apoptosis in response to microbial infection induces autoreactive TH17 cells.

  • Laura Campisi‎ et al.
  • Nature immunology‎
  • 2016‎

Microbial infections often precede the onset of autoimmunity. How infections trigger autoimmunity remains poorly understood. We investigated the possibility that infection might create conditions that allow the stimulatory presentation of self peptides themselves and that this might suffice to elicit autoreactive T cell responses that lead to autoimmunity. Self-reactive CD4(+) T cells are major drivers of autoimmune disease, but their activation is normally prevented through regulatory mechanisms that limit the immunostimulatory presentation of self antigens. Here we found that the apoptosis of infected host cells enabled the presentation of self antigens by major histocompatibility complex class II molecules in an inflammatory context. This was sufficient for the generation of an autoreactive TH17 subset of helper T cells, prominently associated with autoimmune disease. Once induced, the self-reactive TH17 cells promoted auto-inflammation and autoantibody generation. Our findings have implications for how infections precipitate autoimmunity.


The transcription cofactor Hopx is required for regulatory T cell function in dendritic cell-mediated peripheral T cell unresponsiveness.

  • Daniel Hawiger‎ et al.
  • Nature immunology‎
  • 2010‎

Induced regulatory T cells (iT(reg) cells) can be generated by peripheral dendritic cells (DCs) that mediate T cell unresponsiveness to rechallenge with antigen. The molecular factors required for the function of such iT(reg) cells remain unknown. We report a critical role for the transcription cofactor homeodomain-only protein (Hop; also known as Hopx) in iT(reg) cells to mediate T cell unresponsiveness in vivo. Hopx-sufficient iT(reg) cells downregulated expression of the transcription factor AP-1 complex and suppressed other T cells. In the absence of Hopx, iT(reg) cells had high expression of the AP-1 complex, proliferated and failed to mediate T cell unresponsiveness to rechallenge with antigen. Thus, Hopx is required for the function of T(reg) cells induced by DCs and the promotion of DC-mediated T cell unresponsiveness in vivo.


Short-term dietary changes can result in mucosal and systemic immune depression.

  • Francesco Siracusa‎ et al.
  • Nature immunology‎
  • 2023‎

Omnivorous animals, including mice and humans, tend to prefer energy-dense nutrients rich in fat over plant-based diets, especially for short periods of time, but the health consequences of this short-term consumption of energy-dense nutrients are unclear. Here, we show that short-term reiterative switching to 'feast diets', mimicking our social eating behavior, breaches the potential buffering effect of the intestinal microbiota and reorganizes the immunological architecture of mucosa-associated lymphoid tissues. The first dietary switch was sufficient to induce transient mucosal immune depression and suppress systemic immunity, leading to higher susceptibility to Salmonella enterica serovar Typhimurium and Listeria monocytogenes infections. The ability to respond to antigenic challenges with a model antigen was also impaired. These observations could be explained by a reduction of CD4+ T cell metabolic fitness and cytokine production due to impaired mTOR activity in response to reduced microbial provision of fiber metabolites. Reintroducing dietary fiber rewired T cell metabolism and restored mucosal and systemic CD4+ T cell functions and immunity. Finally, dietary intervention with human volunteers confirmed the effect of short-term dietary switches on human CD4+ T cell functionality. Therefore, short-term nutritional changes cause a transient depression of mucosal and systemic immunity, creating a window of opportunity for pathogenic infection.


Defective survival of naive CD8+ T lymphocytes in the absence of the beta3 regulatory subunit of voltage-gated calcium channels.

  • Mithilesh K Jha‎ et al.
  • Nature immunology‎
  • 2009‎

The survival of T lymphocytes requires sustained, Ca(2+) influx-dependent gene expression. The molecular mechanism that governs sustained Ca(2+) influx in naive T lymphocytes is unknown. Here we report an essential role for the beta3 regulatory subunit of voltage-gated calcium (Ca(v)) channels in the maintenance of naive CD8(+) T cells. Deficiency in beta3 resulted in a profound survival defect of CD8(+) T cells. This defect correlated with depletion of the pore-forming subunit Ca(v)1.4 and attenuation of T cell antigen receptor (TCR)-mediated global Ca(2+) entry in CD8(+) T cells. Ca(v)1.4 and beta3 associated with T cell signaling machinery and Ca(v)1.4 localized in lipid rafts. Our data demonstrate a mechanism by which Ca(2+) entry is controlled by a Ca(v)1.4-beta3 channel complex in T cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: