Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Molecular Ecological Insights into Neotropical Bird-Tick Interactions.

  • Matthew J Miller‎ et al.
  • PloS one‎
  • 2016‎

In the tropics, ticks parasitize many classes of vertebrate hosts. However, because many tropical tick species are only identifiable in the adult stage, and these adults usually parasitize mammals, most attention on the ecology of tick-host interactions has focused on mammalian hosts. In contrast, immature Neotropical ticks are often found on wild birds, yet difficulties in identifying immatures hinder studies of birds' role in tropical tick ecology and tick-borne disease transmission. In Panama, we found immature ticks on 227 out of 3,498 individually-sampled birds representing 93 host species (24% of the bird species sampled, and 13% of the Panamanian land bird fauna). Tick parasitism rates did not vary with rainfall or temperature, but did vary significantly with several host ecological traits. Likewise, Neotropical-Nearctic migratory birds were significantly less likely to be infested than resident species. Using a molecular library developed from morphologically-identified adult ticks specifically for this study, we identified eleven tick species parasitizing birds, indicating that a substantial portion of the Panamanian avian species pool is parasitized by a diversity of tick species. Tick species that most commonly parasitized birds had the widest diversity of avian hosts, suggesting that immature tick species are opportunistic bird parasites. Although certain avian ecological traits are positively associated with parasitism, we found no evidence that individual tick species show specificity to particular avian host ecological traits. Finally, our data suggest that the four principal vectors of Rocky Mountain Spotted Fever in the Neotropics rarely, if ever, parasitize Panamanian birds. However, other tick species that harbor newly-discovered rickettsial parasites of unknown pathogenicity are frequently found on these birds. Given our discovery of broad interaction between Panamanian tick and avian biodiversity, future work on tick ecology and the dynamics of emerging tropical tick-borne pathogens should explicitly consider wild bird as hosts.


Mitogenomics of Central American weakly-electric fishes.

  • Celestino Aguilar‎ et al.
  • Gene‎
  • 2019‎

Electric fishes are a diverse group of freshwater organisms with the ability to generate electric organ discharges (EODs) that are used for communication and electrolocation. This group (ca. 200 species) has originated in South America, and six species colonized the Central American Isthmus. Here, we assembled the complete mitochondrial genomes (mitogenomes) for three Central American electric fishes (i.e. Sternopygus dariensis, Brachyhypopomus occidentalis, and Apteronotus rostratus), and, based on these data, explored their phylogenetic position among Gymnotiformes. The three mitogenomes show the same gene order, as reported for other fishes, with a size ranging from 16,631 to 17,093 bp. We uncovered a novel 60 bp intergenic spacer (IGS) located between the COII and tRNALys genes, which appears to be unique to the Apteronotidae. Furthermore, phylogenetic relationships supported the traditional monophyly of Gymnotiformes, with the three species positioned within their respective family. In addition, the genus Apteronotus belongs to the early diverging lineage of the order. Finally, we found high sequence divergence (13%) between our B. occidentalis specimen and a sequence previously reported in GenBank, suggesting that the prior mitogenome of B. occidentalis represents a different South American species. Indeed, phylogenetic analyses using Cytochrome b gene across the genus placed the previously reported individual within B. bennetti. Our study provides novel mitogenome resources that will advance our understanding of the diversity and phylogenetic history of Neotropical fishes.


Agua Salud alphavirus defines a novel lineage of insect-specific alphaviruses discovered in the New World.

  • Kyra Hermanns‎ et al.
  • The Journal of general virology‎
  • 2020‎

The genus Alphavirus harbours mostly insect-transmitted viruses that cause severe disease in humans, livestock and wildlife. Thus far, only three alphaviruses with a host range restricted to insects have been found in mosquitoes from the Old World, namely Eilat virus (EILV), Taï Forest alphavirus (TALV) and Mwinilunga alphavirus (MWAV). In this study, we found a novel alphavirus in one Culex declarator mosquito sampled in Panama. The virus was isolated in C6/36 mosquito cells, and full genome sequencing revealed an 11 468 nt long genome with maximum pairwise nucleotide identity of 62.7 % to Sindbis virus. Phylogenetic analyses placed the virus as a solitary deep rooting lineage in a basal relationship to the Western equine encephalitis antigenic complex and to the clade comprising EILV, TALV and MWAV, indicating the detection of a novel alphavirus, tentatively named Agua Salud alphavirus (ASALV). No growth of ASALV was detected in vertebrate cell lines, including cell lines derived from ectothermic animals, and replication of ASALV was strongly impaired above 31 °C, suggesting that ASALV represents the first insect-restricted alphavirus of the New World.


High infestation of invasive Aedes mosquitoes in used tires along the local transport network of Panama.

  • Kelly L Bennett‎ et al.
  • Parasites & vectors‎
  • 2019‎

The long-distance dispersal of the invasive disease vectors Aedes aegypti and Aedes albopictus has introduced arthropod-borne viruses into new geographical regions, causing a significant medical and economic burden. The used-tire industry is an effective means of Aedes dispersal, yet studies to determine Aedes occurrence and the factors influencing their distribution along local transport networks are lacking. To assess infestation along the primary transport network of Panama we documented all existing garages that trade used tires on the highway and surveyed a subset for Ae. aegypti and Ae. albopictus. We also assess the ability of a mass spectrometry approach to classify mosquito eggs by comparing our findings to those based on traditional larval surveillance.


Comparative phylogeography reveals widespread cryptic diversity driven by ecology in Panamanian birds.

  • J F McLaughlin‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Widespread species often harbor unrecognized genetic diversity, and investigating the factors associated with such cryptic variation can help us better understand the forces driving diversification. Here, we identify potential cryptic species based on a comprehensive dataset of COI mitochondrial DNA barcodes from 2,333 individual Panamanian birds across 429 species, representing 391 (59%) of the 659 resident landbird species of the country, as well as opportunistically sampled waterbirds. We complement this dataset with additional publicly available mitochondrial loci, such as ND2 and cytochrome b, obtained from whole mitochondrial genomes from 20 taxa. Using barcode identification numbers (BINs), we find putative cryptic species in 19% of landbird species, highlighting hidden diversity in the relatively well-described avifauna of Panama. Whereas some of these mitochondrial divergence events corresponded with recognized geographic features that likely isolated populations, such as the Cordillera Central highlands, the majority (74%) of lowland splits were between eastern and western populations. The timing of these splits are not temporally coincident across taxa, suggesting that historical events, such as the formation of the Isthmus of Panama and Pleistocene climatic cycles, were not the primary drivers of cryptic diversification. Rather, we observed that forest species, understory species, insectivores, and strongly territorial species-all traits associated with lower dispersal ability-were all more likely to have multiple BINs in Panama, suggesting strong ecological associations with cryptic divergence. Additionally, hand-wing index, a proxy for dispersal capability, was significantly lower in species with multiple BINs, indicating that dispersal ability plays an important role in generating diversity in Neotropical birds. Together, these results underscore the need for evolutionary studies of tropical bird communities to consider ecological factors along with geographic explanations, and that even in areas with well-known avifauna, avian diversity may be substantially underestimated.


Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus.

  • Kelly L Bennett‎ et al.
  • Scientific reports‎
  • 2019‎

Aedes aegypti and Aedes albopictus develop in the same aquatic sites where they encounter microorganisms that influence their life history and capacity to transmit human arboviruses. Some bacteria such as Wolbachia are currently being considered for the control of Dengue, Chikungunya and Zika. Yet little is known about the dynamics and diversity of Aedes-associated bacteria, including larval habitat features that shape their tempo-spatial distribution. We applied large-scale 16S rRNA amplicon sequencing to 960 adults and larvae of both Ae. aegypti and Ae. albopictus mosquitoes from 59 sampling sites widely distributed across nine provinces of Panama. We find both species share a limited, yet highly variable core microbiota, reflecting high stochasticity within their oviposition habitats. Despite sharing a large proportion of microbiota, Ae. aegypti harbours higher bacterial diversity than Ae. albopictus, primarily due to rarer bacterial groups at the larval stage. We find significant differences between the bacterial communities of larvae and adult mosquitoes, and among samples from metal and ceramic containers. However, we find little support for geography, water temperature and pH as predictors of bacterial associates. We report a low incidence of natural Wolbachia infection for both Aedes and its geographical distribution. This baseline information provides a foundation for studies on the functions and interactions of Aedes-associated bacteria with consequences for bio-control within Panama.


COVID-19 pandemic in Panama: lessons of the unique risks and research opportunities for Latin America.

  • Jose R Loaiza‎ et al.
  • Revista panamericana de salud publica = Pan American journal of public health‎
  • 2020‎

The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.


Tempo and mode of allopatric divergence in the weakly electric fish Sternopygus dariensis in the Isthmus of Panama.

  • Celestino Aguilar‎ et al.
  • Scientific reports‎
  • 2019‎

Spatial isolation is one of the main drivers of allopatric speciation, but the extent to which spatially-segregated populations accumulate genetic differences relevant to speciation is not always clear. We used data from ultraconserved elements (UCEs) and whole mitochondrial genomes (i.e., mitogenomes) to explore genetic variation among allopatric populations of the weakly electric fish Sternopygus dariensis across the Isthmus of Panama. We found strong genetic divergence between eastern and western populations of S. dariensis. Over 77% of the UCE loci examined were differentially fixed between populations, and these loci appear to be distributed across the species' genome. Population divergence occurred within the last 1.1 million years, perhaps due to global glaciation oscillations during the Pleistocene. Our results are consistent with a pattern of genetic differentiation under strict geographic isolation, and suggest the presence of incipient allopatric species within S. dariensis. Genetic divergence in S. dariensis likely occurred in situ, long after the closure of the Isthmus of Panama. Our study highlights the contribution of spatial isolation and vicariance to promoting rapid diversification in Neotropical freshwater fishes. The study of spatially-segregated populations within the Isthmus of Panama could reveal how genetic differences accumulate as allopatric speciation proceeds.


A Multicomponent Animal Virus Isolated from Mosquitoes.

  • Jason T Ladner‎ et al.
  • Cell host & microbe‎
  • 2016‎

RNA viruses exhibit a variety of genome organization strategies, including multicomponent genomes in which each segment is packaged separately. Although multicomponent genomes are common among viruses infecting plants and fungi, their prevalence among those infecting animals remains unclear. We characterize a multicomponent RNA virus isolated from mosquitoes, designated Guaico Culex virus (GCXV). GCXV belongs to a diverse clade of segmented viruses (Jingmenvirus) related to the prototypically unsegmented Flaviviridae. The GCXV genome comprises five segments, each of which appears to be separately packaged. The smallest segment is not required for replication, and its presence is variable in natural infections. We also describe a variant of Jingmen tick virus, another Jingmenvirus, sequenced from a Ugandan red colobus monkey, thus expanding the host range of this segmented and likely multicomponent virus group. Collectively, this study provides evidence for the existence of multicomponent animal viruses and their potential relevance for animal and human health.


The genomic signal of local environmental adaptation in Aedes aegypti mosquitoes.

  • Kelly L Bennett‎ et al.
  • Evolutionary applications‎
  • 2021‎

Local adaptation is important when predicting arthropod-borne disease risk because of its impacts on vector population fitness and persistence. However, the extent that vector populations are adapted to the environment generally remains unknown. Despite low population structure and high gene flow in Aedes aegypti mosquitoes across Panama, excepting the province of Bocas del Toro, we identified 128 candidate SNPs, clustered within 17 genes, which show a strong genomic signal of local environmental adaptation. This putatively adaptive variation occurred across fine geographical scales with the composition and frequency of candidate adaptive loci differing between populations in wet tropical environments along the Caribbean coast and dry tropical conditions typical of the Pacific coast. Temperature and vegetation were important predictors of adaptive genomic variation in Ae. aegypti with several potential areas of local adaptation identified. Our study lays the foundations of future work to understand whether environmental adaptation in Ae. aegypti impacts the arboviral disease landscape and whether this could either aid or hinder efforts of population control.


Anopheles albimanus (Diptera: Culicidae) Ensemble Distribution Modeling: Applications for Malaria Elimination.

  • Charlotte G Rhodes‎ et al.
  • Insects‎
  • 2022‎

In the absence of entomological information, tools for predicting Anopheles spp. presence can help evaluate the entomological risk of malaria transmission. Here, we illustrate how species distribution models (SDM) could quantify potential dominant vector species presence in malaria elimination settings. We fitted a 250 m resolution ensemble SDM for Anopheles albimanus Wiedemann. The ensemble SDM included predictions based on seven different algorithms, 110 occurrence records and 70 model projections. SDM covariates included nine environmental variables that were selected based on their importance from an original set of 28 layers that included remotely and spatially interpolated locally measured variables for the land surface of Costa Rica. Goodness of fit for the ensemble SDM was very high, with a minimum AUC of 0.79. We used the resulting ensemble SDM to evaluate differences in habitat suitability (HS) between commercial plantations and surrounding landscapes, finding a higher HS in pineapple and oil palm plantations, suggestive of An. albimanus presence, than in surrounding landscapes. The ensemble SDM suggested a low HS for An. albimanus at the presumed epicenter of malaria transmission during 2018-2019 in Costa Rica, yet this vector was likely present at the two main towns also affected by the epidemic. Our results illustrate how ensemble SDMs in malaria elimination settings can provide information that could help to improve vector surveillance and control.


Amblyomma tapirellum  (Acari: Ixodidae) collected from tropical forest canopy.

  • Jose R Loaiza‎ et al.
  • F1000Research‎
  • 2013‎

Free-ranging ticks are widely known to be restricted to the ground level of vegetation. Here, we document the capture of the tick species Amblyomma tapirellum in light traps placed in the forest canopy of Barro Colorado Island, central Panama. A total of forty eight adults and three nymphs were removed from carbon dioxide-octenol baited CDC light traps suspended 20 meters above the ground during surveys for forest canopy mosquitoes. To our knowledge, this represents the first report of questing ticks from the canopy of tropical forests. Our finding suggests a novel ecological relationship between A. tapirellum and arboreal mammals, perhaps monkeys that come to the ground to drink or to feed on fallen fruits.


Epidemic and Non-Epidemic Hot Spots of Malaria Transmission Occur in Indigenous Comarcas of Panama.

  • William Lainhart‎ et al.
  • PLoS neglected tropical diseases‎
  • 2016‎

From 2002-2005, Panama experienced a malaria epidemic that has been associated with El Niño Southern Oscillation weather patterns, decreased funding for malaria control, and landscape modification. Case numbers quickly decreased afterward, and Panama is now in the pre-elimination stage of malaria eradication. To achieve this new goal, the characterization of epidemiological risk factors, foci of transmission, and important anopheline vectors is needed. Of the 24,681 reported cases in these analyses (2000-2014), ~62% occurred in epidemic years and ~44% in indigenous comarcas (5.9% of Panama's population). Sub-analyses comparing overall numbers of cases in epidemic and non-epidemic years identified females, comarcas and some 5-year age categories as those disproportionately affected by malaria during epidemic years. Annual parasites indices (APIs; number of cases per 1,000 persons) for Plasmodium vivax were higher in comarcas compared to provinces for all study years, though P. falciparum APIs were only higher in comarcas during epidemic years. Interestingly, two comarcas report increasing numbers of cases annually, despite national annual decreases. Inclusion of these comarcas within identified foci of malaria transmission confirmed their roles in continued transmission. Comparison of species distribution models for two important anophelines with Plasmodium case distribution suggest An. albimanus is the primary malaria vector in Panama, confirmed by identification of nine P. vivax-infected specimen pools. Future malaria eradication strategies in Panama should focus on indigenous comarcas and include both active surveillance for cases and comprehensive anopheline vector surveys.


Phylogeography of the neotropical Anopheles triannulatus complex (Diptera: Culicidae) supports deep structure and complex patterns.

  • Marta Moreno‎ et al.
  • Parasites & vectors‎
  • 2013‎

The molecular phylogenetic relationships and population structure of the species of the Anopheles triannulatus complex: Anopheles triannulatus s.s., Anopheles halophylus and the putative species Anopheles triannulatus C were investigated.


Habitat disturbance and the organization of bacterial communities in Neotropical hematophagous arthropods.

  • Kelly L Bennett‎ et al.
  • PloS one‎
  • 2019‎

The microbiome plays a key role in the biology, ecology and evolution of arthropod vectors of human pathogens. Vector-bacterial interactions could alter disease transmission dynamics through modulating pathogen replication and/or vector fitness. Nonetheless, our understanding of the factors shaping the bacterial community in arthropod vectors is incomplete. Using large-scale 16S amplicon sequencing, we examine how habitat disturbance structures the bacterial assemblages of field-collected whole-body hematophagous arthropods that vector human pathogens including mosquitoes (Culicidae), sand flies (Psychodidae), biting midges (Ceratopogonidae) and hard ticks (Ixodidae). We found that all comparisons of the bacterial community among species yielded statistically significant differences, but a difference was not observed between adults and nymphs of the hard tick, Haemaphysalis juxtakochi. While Culicoides species had the most distinct bacterial community among dipterans, tick species were composed of entirely different bacterial OTU's. We observed differences in the proportions of some bacterial types between pristine and disturbed habitats for Coquillettidia mosquitoes, Culex mosquitoes, and Lutzomyia sand flies, but their associations differed within and among arthropod assemblages. In contrast, habitat quality was a poor predictor of differences in bacterial classes for Culicoides biting midges and hard tick species. In general, similarities in the bacterial communities among hematophagous arthropods could be explained by their phylogenetic relatedness, although intraspecific variation seems influenced by habitat disturbance.


Proteomic fingerprinting of Neotropical hard tick species (Acari: Ixodidae) using a self-curated mass spectra reference library.

  • Rolando A Gittens‎ et al.
  • PLoS neglected tropical diseases‎
  • 2020‎

Matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry is an analytical method that detects macromolecules that can be used for proteomic fingerprinting and taxonomic identification in arthropods. The conventional MALDI approach uses fresh laboratory-reared arthropod specimens to build a reference mass spectra library with high-quality standards required to achieve reliable identification. However, this may not be possible to accomplish in some arthropod groups that are difficult to rear under laboratory conditions, or for which only alcohol preserved samples are available. Here, we generated MALDI mass spectra of highly abundant proteins from the legs of 18 Neotropical species of adult field-collected hard ticks, several of which had not been analyzed by mass spectrometry before. We then used their mass spectra as fingerprints to identify each tick species by applying machine learning and pattern recognition algorithms that combined unsupervised and supervised clustering approaches. Both Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) classification algorithms were able to identify spectra from different tick species, with LDA achieving the best performance when applied to field-collected specimens that did have an existing entry in a reference library of arthropod protein spectra. These findings contribute to the growing literature that ascertains mass spectrometry as a rapid and effective method to complement other well-established techniques for taxonomic identification of disease vectors, which is the first step to predict and manage arthropod-borne pathogens.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: