Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Glucose dysregulation and response to common anti-diabetic agents in the FATZO/Pco mouse.

  • Richard G Peterson‎ et al.
  • PloS one‎
  • 2017‎

The FATZO/Pco mouse is the result of a cross of the C57BL/6J and AKR/J strains. The crossing of these two strains and the selective inbreeding for obesity, insulin resistance and hyperglycemia has resulted in an inbred strain exhibiting obesity in the presumed presence of an intact leptin pathway. Routinely used rodent models for obesity and diabetes research have a monogenic defect in leptin signaling that initiates obesity. Given that obesity and its sequelae in humans are polygenic in nature and not associated with leptin signaling defects, the FATZO mouse may represent a more translatable rodent model for study of obesity and its associated metabolic disturbances. The FATZO mouse develops obesity spontaneously when fed a normal chow diet. Glucose intolerance with increased insulin levels are apparent in FATZO mice as young as 6 weeks of age. These progress to hyperglycemia/pre-diabetes and frank diabetes with decreasing insulin levels as they age. The disease in these mice is multi-faceted, similar to the metabolic syndrome apparent in obese individuals, and thus provides a long pre-diabetic state for determining the preventive value of new interventions. We have assessed the utility of this new model for the pre-clinical screening of agents to stop or slow progression of the metabolic syndrome to severe diabetes. Our assessment included: 1) characterization of the spontaneous development of disease, 2) comparison of metabolic disturbances of FATZO mice to control mice and 3) validation of the model with regard to the effectiveness of current and emerging anti-diabetic agents; rosiglitazone, metformin and semaglutide.


Postprandial Oxidative Metabolism of Human Brown Fat Indicates Thermogenesis.

  • Mueez U Din‎ et al.
  • Cell metabolism‎
  • 2018‎

Human studies suggest that a meal elevates glucose uptake in brown adipose tissue (BAT). However, in postprandial state the thermogenic activity and the metabolism of non-esterified fatty acids (NEFAs) in BAT remain unclear. Using indirect calorimetry combined with positron emission tomography and computed tomography (PET/CT), we showed that whole-body and BAT thermogenesis (oxygen consumption) increases after the ingestion of a mixed carbohydrate-rich meal, to the same extent as in cold stress. Postprandial NEFA uptake into BAT is minimal, possibly due to elevated plasma insulin inhibiting lipolysis. However, the variation in postprandial NEFA uptake is linked to BAT thermogenesis. We identified several genes participating in lipid metabolism to be expressed at higher levels in BAT compared with white fat in postprandial state, and to be positively correlated with BAT UCP1 expression. These findings suggest that substrates preferred by BAT in postprandial state are glucose or LPL-released NEFAs due to insulin stimulation.


GIP Receptor Agonism Attenuates GLP-1 Receptor Agonist-Induced Nausea and Emesis in Preclinical Models.

  • Tito Borner‎ et al.
  • Diabetes‎
  • 2021‎

Glucagon-like peptide 1 receptor (GLP-1R) agonists decrease body weight and improve glycemic control in obesity and diabetes. Patient compliance and maximal efficacy of GLP-1 therapeutics are limited by adverse side effects, including nausea and emesis. In three different species (i.e., mice, rats, and musk shrews), we show that glucose-dependent insulinotropic polypeptide receptor (GIPR) signaling blocks emesis and attenuates illness behaviors elicited by GLP-1R activation, while maintaining reduced food intake, body weight loss, and improved glucose tolerance. The area postrema and nucleus tractus solitarius (AP/NTS) of the hindbrain are required for food intake and body weight suppression by GLP-1R ligands and processing of emetic stimuli. Using single-nuclei RNA sequencing, we identified the cellular phenotypes of AP/NTS cells expressing GIPR and GLP-1R on distinct populations of inhibitory and excitatory neurons, with the greatest expression of GIPR in γ-aminobutyric acid-ergic neurons. This work suggests that combinatorial pharmaceutical targeting of GLP-1R and GIPR will increase efficacy in treating obesity and diabetes by reducing nausea and vomiting.


Structural determinants of dual incretin receptor agonism by tirzepatide.

  • Bingfa Sun‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

SignificanceTirzepatide is a dual agonist of the glucose-dependent insulinotropic polypeptide receptor (GIPR) and the glucagon-like peptide-1 receptor (GLP-1R), which are incretin receptors that regulate carbohydrate metabolism. This investigational agent has proven superior to selective GLP-1R agonists in clinical trials in subjects with type 2 diabetes mellitus. Intriguingly, although tirzepatide closely resembles native GIP in how it activates the GIPR, it differs markedly from GLP-1 in its activation of the GLP-1R, resulting in less agonist-induced receptor desensitization. We report how cryogenic electron microscopy and molecular dynamics simulations inform the structural basis for the unique pharmacology of tirzepatide. These studies reveal the extent to which fatty acid modification, combined with amino acid sequence, determines the mode of action of a multireceptor agonist.


Long-Acting and Selective Oxytocin Peptide Analogs Show Antidiabetic and Antiobesity Effects in Male Mice.

  • Brandy Snider‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

Oxytocin (OXT) has been shown to suppress appetite, induce weight loss, and improve glycemic control and lipid metabolism in several species, including humans, monkeys, and rodents. However, OXT's short half-life in circulation and lack of receptor selectivity limit its application and efficacy. In this study, we report an OXT peptide analog (OXTGly) that is potent and selective for the OXT receptor (OXTR). OXT, but not OXTGly, activated vasopressin receptors in vitro and acutely increased blood pressure in vivo when administered IP. OXT suppressed food intake in mice, whereas OXTGly had a moderate effect on food intake when administered IP or intracerebroventricularly. Both OXT (IP) and OXTGly (IP) improved glycemic control in glucose tolerance tests. Additionally, both OXT (IP) and OXTGly (IP) stimulated insulin, glucagon-like peptide 1, and glucagon secretion in mice. We generated lipid-conjugated OXT (acylated-OXT) and OXTGly (acylated-OXTGly) and demonstrated that these molecules have significantly extended half-lives in vivo. Compared with OXT, 2-week treatment of diet-induced obese mice with acylated-OXT [subcutaneous(ly) (SC)] resulted in enhanced body weight reduction, an improved lipid profile, and gene expression changes consistent with increased lipolysis and decreased gluconeogenesis. Treatment with acylated-OXTGly (SC) also resulted in a statistically significant weight loss, albeit to a lesser degree compared with acylated-OXT treatment. In conclusion, we demonstrate that selective activation of the OXTR pathway results in both acute and chronic metabolic benefits, whereas potential activation of vasopressin receptors by nonselective OXT analogs causes physiological stress that contributes to additional weight loss.


Modified UCN2 peptide treatment improves skeletal muscle mass and function in mouse models of obesity-induced insulin resistance.

  • Melissa L Borg‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2021‎

Type 2 diabetes and obesity are often seen concurrently with skeletal muscle wasting, leading to further derangements in function and metabolism. Muscle wasting remains an unmet need for metabolic disease, and new approaches are warranted. The neuropeptide urocortin 2 (UCN2) and its receptor corticotropin releasing factor receptor 2 (CRHR2) are highly expressed in skeletal muscle and play a role in regulating energy balance, glucose metabolism, and muscle mass. The aim of this study was to investigate the effects of modified UCN2 peptides as a pharmaceutical therapy to counteract the loss of skeletal muscle mass associated with obesity and casting immobilization.


GIPR Agonism Inhibits PYY-Induced Nausea-Like Behavior.

  • Ricardo J Samms‎ et al.
  • Diabetes‎
  • 2022‎

The induction of nausea and emesis is a major barrier to maximizing the weight loss profile of obesity medications, and therefore, identifying mechanisms that improve tolerability could result in added therapeutic benefit. The development of peptide YY (PYY)-based approaches to treat obesity are no exception, as PYY receptor agonism is often accompanied by nausea and vomiting. Here, we sought to determine whether glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) agonism reduces PYY-induced nausea-like behavior in mice. We found that central and peripheral administration of a GIPR agonist reduced conditioned taste avoidance (CTA) without affecting hypophagia mediated by a PYY analog. The receptors for GIP and PYY (Gipr and Npy2r) were found to be expressed by the same neurons in the area postrema (AP), a brainstem nucleus involved in detecting aversive stimuli. Peripheral administration of a GIPR agonist induced neuronal activation (cFos) in the AP. Further, whole-brain cFos analyses indicated that PYY-induced CTA was associated with augmented neuronal activity in the parabrachial nucleus (PBN), a brainstem nucleus that relays aversive/emetic signals to brain regions that control feeding behavior. Importantly, GIPR agonism reduced PYY-mediated neuronal activity in the PBN, providing a potential mechanistic explanation for how GIPR agonist treatment reduces PYY-induced nausea-like behavior. Together, the results of our study indicate a novel mechanism by which GIP-based therapeutics may have benefit in improving the tolerability of weight loss agents.


Secretin-Activated Brown Fat Mediates Prandial Thermogenesis to Induce Satiation.

  • Yongguo Li‎ et al.
  • Cell‎
  • 2018‎

The molecular mediator and functional significance of meal-associated brown fat (BAT) thermogenesis remains elusive. Here, we identified the gut hormone secretin as a non-sympathetic BAT activator mediating prandial thermogenesis, which consequentially induces satiation, thereby establishing a gut-secretin-BAT-brain axis in mammals with a physiological role of prandial thermogenesis in the control of satiation. Mechanistically, meal-associated rise in circulating secretin activates BAT thermogenesis by stimulating lipolysis upon binding to secretin receptors in brown adipocytes, which is sensed in the brain and promotes satiation. Chronic infusion of a modified human secretin transiently elevates energy expenditure in diet-induced obese mice. Clinical trials with human subjects showed that thermogenesis after a single-meal ingestion correlated with postprandial secretin levels and that secretin infusions increased glucose uptake in BAT. Collectively, our findings highlight the largely unappreciated function of BAT in the control of satiation and qualify BAT as an even more attractive target for treating obesity.


Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men.

  • Piryanka Motiani‎ et al.
  • Diabetes, obesity & metabolism‎
  • 2017‎

To test the hypothesis that high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) improve brown adipose tissue (BAT) insulin sensitivity.


LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept.

  • Tamer Coskun‎ et al.
  • Molecular metabolism‎
  • 2018‎

A novel dual GIP and GLP-1 receptor agonist, LY3298176, was developed to determine whether the metabolic action of GIP adds to the established clinical benefits of selective GLP-1 receptor agonists in type 2 diabetes mellitus (T2DM).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: