Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 82 papers

FK506 enhances reinnervation by regeneration and by collateral sprouting of peripheral nerve fibers.

  • Esther Udina‎ et al.
  • Experimental neurology‎
  • 2003‎

We examined the effects of FK506 administration on the degree of target reinnervation by regenerating axons (following sciatic nerve crush) and by collateral sprouts of the intact saphenous nerve (after sciatic nerve resection) in the mouse. FK506-treated animals received either 0.2 or 5 mg/kg/day, dosages previously found to maximally increase the rate of axonal regeneration in the mouse. Functional reinnervation of motor, sensory, and sweating activities was assessed by noninvasive methods in the hind paw over a 1-month period following lesion. Morphometric analysis of the regenerated nerves and immunohistochemical labeling of the paw pads were performed at the end of follow-up. In the sciatic nerve crush model, FK506 administration shortened the time until target reinnervation and increased the degree of functional and morphological reinnervation achieved. The recovery achieved by regeneration was greater overall with the 5 mg/kg dose than with the dose of 0.2 mg/kg of FK506. In the collateral sprouting model, reinnervation by nociceptive and sudomotor axons was enhanced by FK506. Here, the field expansion followed a faster course between 4 and 14 days in FK506-treated animals. In regard to dose, while collateral sprouting of nociceptive axons was similarly increased at both dosages (0.2 and 5 mg/kg), sprouting of sympathetic axons was more extensive at the high dose. This suggests that the efficacy of FK506 varies between subtypes of neurons. Taken together, our findings indicate that, in addition to an effect on rate of axonal elongation, FK506 improves functional recovery of denervated targets by increasing both regenerative and collateral reinnervation.


Critical appraisal of temozolomide formulations in the treatment of primary brain tumors: patient considerations.

  • Margarita García‎ et al.
  • Cancer management and research‎
  • 2009‎

Chemotherapy is assuming an increasingly important role in the treatment of malignant gliomas, of which temozolomide (TMZ) is a key part. TMZ belongs to a class of second-generation imidazotetrazinone prodrugs that exhibit linear pharmacokinetics and do not require hepatic metabolism for activation to the active metabolite. New intravenous (iv) TMZ formulations have recently been approved based on studies of bioequivalence between iv and oral TMZ. The efficacy of TMZ was initially evaluated in patients with recurrent disease but phase II and III trials in newly diagnosed gliomas are available. The results of a large phase III trial that compared RT alone vs RT concomitant with oral TMZ created a new standard of adjuvant treatment. Efficacy data for iv TMZ on which its approval was based are those extrapolated from clinical trials with oral TMZ. No comparative data are available on the differences in tolerability and patient satisfaction between oral and iv formulations of TMZ, or for quality of life. New oral formulations could encourage the adherence of patients to treatment. Although patients presumably would prefer oral treatment, iv formulations may be an alternative in noncompliant patients or patients for whom good adherence could not be expected.


In vitro comparison of motor and sensory neuron outgrowth in a 3D collagen matrix.

  • Ilary Allodi‎ et al.
  • Journal of neuroscience methods‎
  • 2011‎

In this work we set up an in vitro model, based on organotypic cultures of spinal cord slices and dorsal root ganglia explants from P7 rats, embedded in a collagen matrix and cultured under the same conditions. As specific reinnervation of end-organs is still an unresolved issue in peripheral nerve research, we characterized a model that allows us to compare under the same conditions motor and sensory neuron regeneration. RT97 labeling was used to visualize the regenerating neurites that extended in the collagen gel from both motor neurons in the spinal cord slices and sensory neurons in the DRG explants after a few days in vitro. By adding different neurotrophic factors in the collagen matrix, we evaluated the reliability of DRG and spinal cord preparations. Moreover, we also set up a co-culture with dissociated Schwann cells to further mimic the permissive environment of the peripheral nerve. Thus, these in vitro models can be useful tools to investigate mechanisms for the selective regeneration of sensory and motor neurons, which can be translated into in vivo models.


Dose-Dependent Differential Effect of Neurotrophic Factors on In Vitro and In Vivo Regeneration of Motor and Sensory Neurons.

  • Daniel Santos‎ et al.
  • Neural plasticity‎
  • 2016‎

Although peripheral axons can regenerate after nerve transection and repair, functional recovery is usually poor due to inaccurate reinnervation. Neurotrophic factors promote directional guidance to regenerating axons and their selective application may help to improve functional recovery. Hence, we have characterized in organotypic cultures of spinal cord and dorsal root ganglia the effect of GDNF, FGF-2, NGF, NT-3, and BDNF at different concentrations on motor and sensory neurite outgrowth. In vitro results show that GDNF and FGF-2 enhanced both motor and sensory neurite outgrowth, NGF and NT-3 were the most selective to enhance sensory neurite outgrowth, and high doses of BDNF selectively enhanced motor neurite outgrowth. Then, NGF, NT-3, and BDNF (as the most selective factors) were delivered in a collagen matrix within a silicone tube to repair the severed sciatic nerve of rats. Quantification of Fluorogold retrolabeled neurons showed that NGF and NT-3 did not show preferential effect on sensory regeneration whereas BDNF preferentially promoted motor axons regeneration. Therefore, the selective effects of NGF and NT-3 shown in vitro are lost when they are applied in vivo, but a high dose of BDNF is able to selectively enhance motor neuron regeneration both in vitro and in vivo.


Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis.

  • Caty Casas‎ et al.
  • Brain and behavior‎
  • 2013‎

Sporadic and familiar amyotrophic lateral sclerosis (ALS) cases presented lower cholinergic activity than in healthy individuals in their still preserved spinal motoneurons (MNs) suggesting that cholinergic reduction might occur before MN death. To unravel how and when cholinergic function is compromised, we have analyzed the spatiotemporal expression of choline acetyltransferase (ChAT) from early presymptomatic stages of the SOD1(G93A) ALS mouse model by confocal immunohistochemistry. The analysis showed an early reduction in ChAT content in soma and presynaptic boutons apposed onto MNs (to 76%) as well as in cholinergic interneurons in the lumbar spinal cord of the 30-day-old SOD1(G93A) mice. Cholinergic synaptic stripping occurred simultaneously to the presence of abundant surrounding major histocompatibility complex II (MHC-II)-positive microglia and the accumulation of nuclear Tdp-43 and the appearance of mild oxidative stress within MNs. Besides, there was a loss of neuronal MHC-I expression, which is necessary for balanced synaptic stripping after axotomy. These events occurred before the selective raise of markers of denervation such as ATF3. By the same time, alterations in postsynaptic cholinergic-related structures were also revealed with a loss of the presence of sigma-1 receptor, a Ca2+ buffering chaperone in the postsynaptic cisternae. By 2 months of age, ChAT seemed to accumulate in the soma of MNs, and thus efferences toward Renshaw interneurons were drastically diminished. In conclusion, cholinergic dysfunction in the local circuitry of the spinal cord may be one of the earliest events in ALS etiopathogenesis.


Novel Neuroprotective Multicomponent Therapy for Amyotrophic Lateral Sclerosis Designed by Networked Systems.

  • Mireia Herrando-Grabulosa‎ et al.
  • PloS one‎
  • 2016‎

Amyotrophic Lateral Sclerosis is a fatal, progressive neurodegenerative disease characterized by loss of motor neuron function for which there is no effective treatment. One of the main difficulties in developing new therapies lies on the multiple events that contribute to motor neuron death in amyotrophic lateral sclerosis. Several pathological mechanisms have been identified as underlying events of the disease process, including excitotoxicity, mitochondrial dysfunction, oxidative stress, altered axonal transport, proteasome dysfunction, synaptic deficits, glial cell contribution, and disrupted clearance of misfolded proteins. Our approach in this study was based on a holistic vision of these mechanisms and the use of computational tools to identify polypharmacology for targeting multiple etiopathogenic pathways. By using a repositioning analysis based on systems biology approach (TPMS technology), we identified and validated the neuroprotective potential of two new drug combinations: Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine. In addition, we estimated their molecular mechanisms of action in silico and validated some of these results in a well-established in vitro model of amyotrophic lateral sclerosis based on cultured spinal cord slices. The results verified that Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine promote neuroprotection of motor neurons and reduce microgliosis.


Differential effects of activity dependent treatments on axonal regeneration and neuropathic pain after peripheral nerve injury.

  • Stefano Cobianchi‎ et al.
  • Experimental neurology‎
  • 2013‎

Activity treatments are useful strategies to increase axonal regeneration and functional recovery after nerve lesions. They are thought to benefit neuropathy by enhancing neurotrophic factor expression. Nevertheless the effects on sensory function are still unclear. Since neurotrophic factors also play a fundamental role in peripheral and central sensitization, we studied the effects of acute electrical stimulation and early treadmill exercise on nerve regeneration and on neuropathic pain, and the relation with the expression of neurotrophins. After sciatic nerve section and suture repair, rats were subjected to electrical stimulation (ES) for 4h after injury, forced treadmill running (TR) for 5 days, or both treatments combined. Sciatic nerve section induced hyperalgesia in the medial area of the plantar skin in the injured paw. TR and ES differently but positively reduced adjacent neuropathic pain before and after sciatic reinnervation. ES enhanced motor and sensory reinnervation, and combination with TR induced strong agonistic effects in relieving pain. The differential effects of these activity treatments were related to changes in neurotrophic factor mRNA levels in sensory and motor neurons. ES speeded up expression of BDNF and GDNF in DRG, and of BDNF and NT3 in the ventral horn. TR reduced the levels of pro-nociceptive factors such as BDNF, NGF and GDNF in DRG. Combination of ES and TR induced intermediate levels suggesting an optimal balancing of treatment effects.


BET protein inhibition regulates cytokine production and promotes neuroprotection after spinal cord injury.

  • Judith Sánchez-Ventura‎ et al.
  • Journal of neuroinflammation‎
  • 2019‎

Spinal cord injury (SCI) usually causes a devastating lifelong disability for patients. After a traumatic lesion, disruption of the blood-spinal cord barrier induces the infiltration of macrophages into the lesion site and the activation of resident glial cells, which release cytokines and chemokines. These events result in a persistent inflammation, which has both detrimental and beneficial effects, but eventually limits functional recovery and contributes to the appearance of neuropathic pain. Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that regulate the expression of inflammatory genes by interacting with acetylated lysine residues. While BET inhibitors are a promising therapeutic strategy for cancer, little is known about their implication after SCI. Thus, the current study was aimed to investigate the anti-inflammatory role of BET inhibitors in this pathologic condition.


Pharmacokinetics of multiple doses of co-crystal of tramadol-celecoxib: findings from a four-way randomized open-label phase I clinical trial.

  • Sebastián Videla‎ et al.
  • British journal of clinical pharmacology‎
  • 2018‎

We compared the pharmacokinetic (PK) profiles of co-crystal of tramadol-celecoxib (CTC) vs. each reference product (alone and in open combination) after single (first dose) and multiple dosing.


Role of Noradrenergic Inputs From Locus Coeruleus on Changes Induced on Axotomized Motoneurons by Physical Exercise.

  • Ariadna Arbat-Plana‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

Physical rehabilitation is one of the cornerstones for the treatment of lesions of the nervous system. After peripheral nerve injuries, activity dependent therapies promote trophic support for the paralyzed muscles, enhance axonal growth and also modulate the maladaptive plastic changes induced by the injury at the spinal level. We have previously demonstrated that an intensive protocol of treadmill running (TR) in rats reduces synaptic stripping on axotomized motoneurons, preserves their perineuronal nets (PNN) and attenuates microglia reactivity. However, it is not clear through which mechanisms exercise is exerting these effects. Here we aimed to evaluate if activation of the locus coeruleus (LC), the noradrenergic center in the brain stem, plays a role in these effects. Since LC is strongly activated during stressful situations, as during intensive exercise, we selectively destroyed the LC by administering the neurotoxin DPS-4 before injuring the sciatic nerve of adult rats. Animals without LC had increased microglia reactivity around injured motoneurons. In these animals, an increasing intensity protocol of TR was not able to prevent synaptic stripping on axotomized motoneurons and the reduction in the thickness of their PNN. In contrast, TR was still able to attenuate microglia reactivity in DSP-4 treated animals, thus indicating that the noradrenergic projections are important for some but not all the effects that exercise induces on the spinal cord after peripheral nerve injury. Moreover, animals subjected to treadmill training showed delayed muscle reinnervation, more evident if treated with DSP-4. However, we did not find differences in treated animals regarding the H/M amplitude ratio, which increased during the first stages of regeneration in all injured groups.


Neuroprotective Effects of Sigma 1 Receptor Ligands on Motoneuron Death after Spinal Root Injury in Mice.

  • Núria Gaja-Capdevila‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Loss of motor neurons (MNs) after spinal root injury is a drawback limiting the recovery after palliative surgery by nerve or muscle transfers. Research based on preventing MN death is a hallmark to improve the perspectives of recovery following severe nerve injuries. Sigma-1 receptor (Sig-1R) is a protein highly expressed in MNs, proposed as neuroprotective target for ameliorating MN degenerative conditions. Here, we used a model of L4-L5 rhizotomy in adult mice to induce MN degeneration and to evaluate the neuroprotective role of Sig-1R ligands (PRE-084, SA4503 and BD1063). Lumbar spinal cord was collected at 7, 14, 28 and 42 days post-injury (dpi) for immunohistochemistry, immunofluorescence and Western blot analyses. This proximal axotomy at the immediate postganglionic level resulted in significant death, up to 40% of spinal MNs at 42 days after injury and showed markedly increased glial reactivity. Sig-1R ligands PRE-084, SA4503 and BD1063 reduced MN loss by about 20%, associated to modulation of endoplasmic reticulum stress markers IRE1α and XBP1. These pathways are Sig-1R specific since they were not produced in Sig-1R knockout mice. These findings suggest that Sig-1R is a promising target for the treatment of MN cell death after neural injuries.


Microglia Stimulation by Protein Extract of Injured Rat Spinal Cord. A Novel In vitro Model for Studying Activated Microglia.

  • Joaquim Hernández‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2021‎

Research on microglia has established the differentiation between the so-called M1 and M2 phenotypes. However, new frameworks have been proposed attempting to discern between meaningful microglia profiles. We have set up an in vitro microglial activation model by adding an injured spinal cord (SCI) lysate to microglial cultures, obtained from postnatal rats, in order to mimic the environment of the spinal cord after injury. We found that under the presence of the SCI lysate microglial cells changed their phenotype, developing less ramified but longer processes, and proliferated. The SCI lysate also led to upregulation of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, downregulation of the anti-inflammatory cytokines IL-10 and IL-4, and a biphasic profile of iNOS. In addition, a latex beads phagocytosis assay revealed the SCI lysate stimulated the phagocytic capacity of microglia. Flow cytometry analysis indicated that microglial cells showed a pro-inflammatory profile in the presence of SCI lysate. Finally, characterization of the microglial activation in the spinal cord on day 7 after contusion injury, we showed that these cells have a pro-inflammatory phenotype. Overall, these results indicate that the use of SCI lysates could be a useful tool to skew microglia towards a closer phenotype to that observed after the spinal cord contusion injury than the use of LPS or IFNγ.


Gene Therapy Overexpressing Neuregulin 1 Type I in Combination With Neuregulin 1 Type III Promotes Functional Improvement in the SOD1G93A ALS Mice.

  • Guillem Mòdol-Caballero‎ et al.
  • Frontiers in neurology‎
  • 2021‎

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting the neuromuscular system for which currently there is no effective therapy. Motoneuron (MN) degeneration involves several complex mechanisms, including surrounding glial cells and skeletal muscle contributions. Neuregulin 1 (NRG1) is a trophic factor present particularly in MNs and neuromuscular junctions. Our previous studies revealed that gene therapy overexpressing the isoform I (NRG1-I) in skeletal muscles as well as overexpressing the isoform III (NRG1-III) directly in the central nervous system are both effective in preserving MNs in the spinal cord of ALS mice, opening novel therapeutic approaches. In this study, we combined administration of both viral vectors overexpressing NRG1-I in skeletal muscles and NRG1-III in spinal cord of the SOD1G93A mice in order to obtain a synergistic effect. The results showed that the combinatorial gene therapy increased preservation of MNs and of innervated neuromuscular junctions and reduced glial reactivity in the spinal cord of the treated SOD1G93A mice. Moreover, NRG1 isoforms overexpression improved motor function of hindlimb muscles and delayed the onset of clinical disease. However, this combinatory gene therapy did not produce a synergic effect compared with single therapies, suggesting an overlap between NRG1-I and NRG1-III activated pathways and their beneficial effects.


Synthesis and Validation of a Bioinspired Catechol-Functionalized Pt(IV) Prodrug for Preclinical Intranasal Glioblastoma Treatment.

  • Xiaoman Mao‎ et al.
  • Cancers‎
  • 2022‎

Glioblastoma is the most malignant and frequently occurring type of brain tumors in adults. Its treatment has been greatly hampered by the difficulty to achieve effective therapeutic concentration in the tumor sites due to its location and the blood-brain barrier. Intranasal administration has emerged as an alternative for drug delivery into the brain though mucopenetration, and rapid mucociliary clearance still remains an issue to be solved before its implementation. To address these issues, based on the intriguing properties of proteins secreted by mussels, polyphenol and catechol functionalization has already been used to promote mucopenetration, intranasal delivery and transport across the blood-brain barrier. Thus, herein we report the synthesis and study of complex 1, a Pt(IV) prodrug functionalized with catecholic moieties. This complex considerably augmented solubility in contrast to cisplatin and showed a comparable cytotoxic effect on cisplatin in HeLa, 1Br3G and GL261 cells. Furthermore, preclinical in vivo therapy using the intranasal administration route suggested that it can reach the brain and inhibit the growth of orthotopic GL261 glioblastoma. These results open new opportunities for catechol-bearing anticancer prodrugs in the treatment for brain tumors via intranasal administration.


Mapping Lesion-Related Epilepsy to a Human Brain Network.

  • Frederic L W V J Schaper‎ et al.
  • JAMA neurology‎
  • 2023‎

It remains unclear why lesions in some locations cause epilepsy while others do not. Identifying the brain regions or networks associated with epilepsy by mapping these lesions could inform prognosis and guide interventions.


Prevention of NKCC1 phosphorylation avoids downregulation of KCC2 in central sensory pathways and reduces neuropathic pain after peripheral nerve injury.

  • Laura Mòdol‎ et al.
  • Pain‎
  • 2014‎

Neuropathic pain after peripheral nerve injury is characterized by loss of inhibition in both peripheral and central pain pathways. In the adult nervous system, the Na(+)-K(+)-2Cl(-) (NKCC1) and neuron-specific K(+)-Cl(-) (KCC2) cotransporters are involved in setting the strength and polarity of GABAergic/glycinergic transmission. After nerve injury, the balance between these cotransporters changes, leading to a decrease in the inhibitory tone. However, the role that NKCC1 and KCC2 play in pain-processing brain areas is unknown. Our goal was to study the effects of peripheral nerve injury on NKCC1 and KCC2 expression in dorsal root ganglia (DRG), spinal cord, ventral posterolateral (VPL) nucleus of the thalamus, and primary somatosensory (S1) cortex. After sciatic nerve section and suture in adult rats, assessment of mechanical and thermal pain thresholds showed evidence of hyperalgesia during the following 2 months. We also found an increase in NKCC1 expression in the DRG and a downregulation of KCC2 in spinal cord after injury, accompanied by later decrease of KCC2 levels in higher projection areas (VPL and S1) from 2 weeks postinjury, correlating with neuropathic pain signs. Administration of bumetanide (30 mg/kg) during 2 weeks following sciatic nerve lesion prevented the previously observed changes in the spinothalamic tract projecting areas and the appearance of hyperalgesia. In conclusion, the present results indicate that changes in NKCC1 and KCC2 in DRG, spinal cord, and central pain areas may contribute to development of neuropathic pain.


Decreased circulating ErbB4 ectodomain fragments as a read-out of impaired signaling function in amyotrophic lateral sclerosis.

  • Inmaculada Lopez-Font‎ et al.
  • Neurobiology of disease‎
  • 2019‎

ErbB4 is a transmembrane receptor tyrosine kinase that binds to neuregulins to activate signaling. Proteolytic cleavage of ErbB4 results in release of soluble fragments of ErbB4 into the interstitial fluid. Disruption of the neuregulin-ErbB4 pathway has been suggested to be involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). This study assesses whether soluble proteolytic fragments of the ErbB4 ectodomain (ecto-ErbB4) can be detected in cerebrospinal fluid (CSF) and plasma, and if the levels are altered in ALS. Immunoprecipitation combined with mass spectrometry or western blotting analyses confirmed the presence of ecto-ErbB4 in human CSF. Several anti-ErbB4-reactive bands, including a 55 kDa fragment, were detected in CSF. The bands were generated in the presence of neuregulin-1 (Nrg1) and were absent in plasma from ErbB4 knockout mice. Ecto-ErbB4 levels were decreased in CSF from ALS patients (n = 20) and ALS with concomitant frontotemporal dementia patients (n = 10), compared to age-matched controls (n = 13). A similar decrease was found for the short ecto-ErbB4 fragments in plasma of the same subjects. Likewise, the 55-kDa ecto-ErbB4 fragments were decreased in the plasma of the two transgenic mouse models of ALS (SOD1G93A and TDP-43A315T). Intracellular ErbB4 fragments were decreased in the frontal cortex from SOD1G93A mice, indicating a reduction in Nrg-dependent induction of ErbB4 proteolytic processing, and suggesting impaired signaling. Accordingly, overexpression of Nrg1 induced by an adeno-associated viral vector increased the levels of the ecto-ErbB4 fragment in the SOD1G93A mice. We conclude that the determination of circulating ecto-ErbB4 fragments could be a tool to evaluate the impairment of the ErbB4 pathway and may be a useful biomarker in ALS.


Studying memory encoding to promote reliable engagement of the medial temporal lobe at the single-subject level.

  • Marta Simó‎ et al.
  • PloS one‎
  • 2015‎

The medial temporal lobe (MTL)—comprising hippocampus and the surrounding neocortical regions—is a targeted brain area sensitive to several neurological diseases. Although functional magnetic resonance imaging (fMRI) has been widely used to assess brain functional abnormalities, detecting MTL activation has been technically challenging. The aim of our study was to provide an fMRI paradigm that reliably activates MTL regions at the individual level, thus providing a useful tool for future research in clinical memory-related studies. Twenty young healthy adults underwent an event-related fMRI study consisting of three encoding conditions: word-pairs, face-name associations and complex visual scenes. A region-of-interest analysis at the individual level comparing novel and repeated stimuli independently for each task was performed. The results of this analysis yielded activations in the hippocampal and parahippocampal regions in most of the participants. Specifically, 95% and 100% of participants showed significant activations in the left hippocampus during the face-name encoding and in the right parahippocampus, respectively, during scene encoding. Additionally, a whole brain analysis, also comparing novel versus repeated stimuli at the group level, showed mainly left frontal activation during the word task. In this group analysis, the face-name association engaged the HP and fusiform gyri bilaterally, along with the left inferior frontal gyrus, and the complex visual scenes activated mainly the parahippocampus and hippocampus bilaterally. In sum, our task design represents a rapid and reliable manner to study and explore MTL activity at the individual level, thus providing a useful tool for future research in clinical memory-related fMRI studies.


Efficacy of a Novel Sigma-1 Receptor Antagonist for Oxaliplatin-Induced Neuropathy: A Randomized, Double-Blind, Placebo-Controlled Phase IIa Clinical Trial.

  • Jordi Bruna‎ et al.
  • Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics‎
  • 2018‎

This trial assessed the efficacy of MR309 (a novel selective sigma-1 receptor ligand previously developed as E-52862) in ameliorating oxaliplatin-induced peripheral neuropathy (oxaipn). A discontinuous regimen of MR309 (400 mg/day, 5 days per cycle) was tested in patients with colorectal cancer receiving FOLFOX in a phase II, randomized, double-blind, placebo-controlled, multicenter clinical trial. Outcome measures included changes in 24-week quantitative measures of thermal sensitivity and total neuropathy score. In total, 124 patients were randomized (1:1) to MR309 or placebo. Sixty-three (50.8%) patients withdrew prematurely before completing 12 planned oxaliplatin cycles. Premature withdrawal because of cancer progression was less frequent in the MR309 group (7.4% vs 25.0% with placebo; p = 0.054). MR309 significantly reduced cold pain threshold temperature [mean treatment effect difference (SE) vs placebo: 5.29 (1.60)°C; p = 0.001] and suprathreshold cold stimulus-evoked pain intensity [mean treatment effect difference: 1.24 (0.57) points; p = 0.032]. Total neuropathy score, health-related quality-of-life measures, and nerve-conduction parameters changed similarly in both arms, whereas the proportion of patients with severe chronic neuropathy (National Cancer Institute Common Terminology Criteria for Adverse Events ≥ 3) was significantly lower in the MR309 group (3.0% vs 18.2% with placebo; p = 0.046). The total amount of oxaliplatin delivered was greater in the active arm (1618.9 mg vs 1453.8 mg with placebo; p = 0.049). Overall, 19.0% of patients experienced at least 1 treatment-related adverse event (25.8% and 11.9% with MR309 and placebo, respectively). Intermittent treatment with MR309 was associated with reduced acute oxaipn and higher oxaliplatin exposure, and showed a potential neuroprotective role for chronic cumulative oxaipn. Furthermore, MR309 showed an acceptable safety profile.


Boosted Regeneration and Reduced Denervated Muscle Atrophy by NeuroHeal in a Pre-clinical Model of Lumbar Root Avulsion with Delayed Reimplantation.

  • David Romeo-Guitart‎ et al.
  • Scientific reports‎
  • 2017‎

The "gold standard" treatment of patients with spinal root injuries consists of delayed surgical reconnection of nerves. The sooner, the better, but problems such as injury-induced motor neuronal death and muscle atrophy due to long-term denervation mean that normal movement is not restored. Herein we describe a preclinical model of root avulsion with delayed reimplantation of lumbar roots that was used to establish a new adjuvant pharmacological treatment. Chronic treatment (up to 6 months) with NeuroHeal, a new combination drug therapy identified using a systems biology approach, exerted long-lasting neuroprotection, reduced gliosis and matrix proteoglycan content, accelerated nerve regeneration by activating the AKT pathway, promoted the formation of functional neuromuscular junctions, and reduced denervation-induced muscular atrophy. Thus, NeuroHeal is a promising treatment for spinal nerve root injuries and axonal regeneration after trauma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: