Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Protective antibody and cytokine responses in mice following immunization with recombinant beta-tubulin and subsequent Trypanosoma evansi challenge.

  • Anup Kumar Tewari‎ et al.
  • Parasites & vectors‎
  • 2015‎

Trypanosomosis or Surra, caused by the flagellated hemoprotozoan parasite Trypanosoma evansi, is a disease of economic importance through its wide prevalence in domestic livestock in tropical countries. In the absence of a protective vaccine, management of the disease relies on a few available chemotherapeutic agents. Although humoral immunity is the mainstay of resistance to T. evansi, the ability of the parasite to vary its immunodominant surface proteins to subvert the immune system has forced vaccine efforts to target a variety of invariant epitopes. Beta tubulin, an integral component of the trypanosome cytoskeleton, was therefore targeted using the recombinant form of the protein for immunization.


The complete mitochondrial genome sequences of two Isospora species (Eimeriidae, Eucoccidiorida, Coccidiasina, Apicomplexa) causing coccidiosis in superb glossy starlings, Lamprotornis superbus (Aves: Sturnidae).

  • Mian A Hafeez‎ et al.
  • Mitochondrial DNA. Part B, Resources‎
  • 2017‎

Complete mitochondrial genomes are reported for two Isospora species causing systemic coccidiosis in Superb Glossy Starlings (Aves: Sturnidae). The A/T rich (34.7% G/C) genomes were 6223 bp in length for Isospora greineri and 6217 bp for Isospora superbusi. Each encoded 3 protein-coding genes, (COI, COIII and CytB) plus 18 LSU and 14 SSU rDNA fragments. Arrangement of protein- and rRNA-coding regions was identical to known Eimeria sp. mt genomes; start codon usage was conventional. The mitochondrial genome structures of Isospora and Eimeria species are conserved and reflect the close phylogenetic association between these eimeriid genera of apicomplexan parasites.


Mitochondrial Junction Region as Genotyping Marker for Cyclospora cayetanensis.

  • Fernanda S Nascimento‎ et al.
  • Emerging infectious diseases‎
  • 2019‎

Cyclosporiasis is an infection caused by Cyclospora cayetanensis, which is acquired by consumption of contaminated fresh food or water. In the United States, cases of cyclosporiasis are often associated with foodborne outbreaks linked to imported fresh produce or travel to disease-endemic countries. Epidemiologic investigation has been the primary method for linking outbreak cases. A molecular typing marker that can identify genetically related samples would be helpful in tracking outbreaks. We evaluated the mitochondrial junction region as a potential genotyping marker. We tested stool samples from 134 laboratory-confirmed cases in the United States by using PCR and Sanger sequencing. All but 2 samples were successfully typed and divided into 14 sequence types. Typing results were identical among samples within each epidemiologically defined case cluster for 7 of 10 clusters. These findings suggest that this marker can distinguish between distinct case clusters and might be helpful during cyclosporiasis outbreak investigations.


The complete mitochondrial genome sequence of Eimeria leuckarti (Eimeriidae, Coccidia, Apicomplexa) infecting domestic horses (Equus ferus caballus).

  • Evelin E Rejman‎ et al.
  • Mitochondrial DNA. Part B, Resources‎
  • 2021‎

The complete mitochondrial genome of Eimeria leuckarti (Eimeriidae, Coccidia, Apicomplexa) was obtained. This morphologically distinctive coccidium is considered to be the only valid Eimeria species of equids and it infects a range of both domestic and wild horses and their relatives. Despite the distinctive appearance of the oocysts of E. leuckarti, the mitochondrial genome organization and gene contents were comparable to other Eimeria spp. and related eimeriid coccidia infecting a range of mammals and birds. The greatly reduced 6242 bp genome is circular-mapping and contains three protein-coding genes (COI, COIII, CytB), 18 fragments encoding the large subunit rRNA (LSU), and 13 fragments encoding the small subunit (SSU) rRNA. No tRNA was encoded similar to other Apicomplexa. A Bayesian inference tree based on aligned CDS and rDNA fragments from Eimeria leuckarti and 34 other coccidia demonstrated that this mt genome has close phylogenetic affinities to Eimeria and Isospora species, and related eimeriid coccidia.


Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys.

  • Mosun E Ogedengbe‎ et al.
  • Parasites & vectors‎
  • 2014‎

Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: