Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 58 papers

Show and tell: disclosure and data sharing in experimental pathology.

  • Paul N Schofield‎ et al.
  • Disease models & mechanisms‎
  • 2016‎

Reproducibility of data from experimental investigations using animal models is increasingly under scrutiny because of the potentially negative impact of poor reproducibility on the translation of basic research. Histopathology is a key tool in biomedical research, in particular for the phenotyping of animal models to provide insights into the pathobiology of diseases. Failure to disclose and share crucial histopathological experimental details compromises the validity of the review process and reliability of the conclusions. We discuss factors that affect the interpretation and validation of histopathology data in publications and the importance of making these data accessible to promote replicability in research.


Mouse Tumor Biology (MTB): a database of mouse models for human cancer.

  • Carol J Bult‎ et al.
  • Nucleic acids research‎
  • 2015‎

The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers.


Mouse models for pseudoxanthoma elasticum: genetic and dietary modulation of the ectopic mineralization phenotypes.

  • Qiaoli Li‎ et al.
  • PloS one‎
  • 2014‎

Pseudoxanthoma elasticum (PXE), a heritable ectopic mineralization disorder, is caused by mutations in the ABCC6 gene. Null mice (Abcc6(-/-) ) recapitulate the genetic, histopathologic and ultrastructural features of PXE, and they demonstrate early and progressive mineralization of vibrissae dermal sheath, which serves as a biomarker of the overall mineralization process. Recently, as part of a mouse aging study at The Jackson Laboratory, 31 inbred mouse strains were necropsied, and two of them, KK/HlJ and 129S1/SvImJ, were noted to have vibrissae dermal mineralization similar to Abcc6(-/-) mice. These two strains were shown to harbor a single nucleotide polymorphism (rs32756904) in the Abcc6 gene, which resulted in out-of-frame splicing and marked reduction in ABCC6 protein expression in the liver of these mice. The same polymorphism is present in two additional mouse strains, DBA/2J and C3H/HeJ, with similar reduction in Abcc6 protein levels, yet these mice did not demonstrate tissue mineralization when kept on standard rodent diet. However, all four mouse strains, when placed on experimental diet enriched in phosphate and low in magnesium, developed extensive ectopic mineralization. These results indicate that the genetic background of mice and the mineral composition of their diet can profoundly modulate the ectopic mineralization process predicated on mutations in the Abcc6 gene. These mice provide novel model systems to study the pathomechanisms and the reasons for strain background on phenotypic variability of PXE.


SHARPIN regulates collagen architecture and ductal outgrowth in the developing mouse mammary gland.

  • Emilia Peuhu‎ et al.
  • The EMBO journal‎
  • 2017‎

SHARPIN is a widely expressed multifunctional protein implicated in cancer, inflammation, linear ubiquitination and integrin activity inhibition; however, its contribution to epithelial homeostasis remains poorly understood. Here, we examined the role of SHARPIN in mammary gland development, a process strongly regulated by epithelial-stromal interactions. Mice lacking SHARPIN expression in all cells (Sharpincpdm), and mice with a stromal (S100a4-Cre) deletion of Sharpin, have reduced mammary ductal outgrowth during puberty. In contrast, Sharpincpdm mammary epithelial cells transplanted in vivo into wild-type stroma, fully repopulate the mammary gland fat pad, undergo unperturbed ductal outgrowth and terminal differentiation. Thus, SHARPIN is required in mammary gland stroma during development. Accordingly, stroma adjacent to invading mammary ducts of Sharpincpdm mice displayed reduced collagen arrangement and extracellular matrix (ECM) stiffness. Moreover, Sharpincpdm mammary gland stromal fibroblasts demonstrated defects in collagen fibre assembly, collagen contraction and degradation in vitro Together, these data imply that SHARPIN regulates the normal invasive mammary gland branching morphogenesis in an epithelial cell extrinsic manner by controlling the organisation of the stromal ECM.


Systematic screening for skin, hair, and nail abnormalities in a large-scale knockout mouse program.

  • John P Sundberg‎ et al.
  • PloS one‎
  • 2017‎

The International Knockout Mouse Consortium was formed in 2007 to inactivate ("knockout") all protein-coding genes in the mouse genome in embryonic stem cells. Production and characterization of these mice, now underway, has generated and phenotyped 3,100 strains with knockout alleles. Skin and adnexa diseases are best defined at the gross clinical level and by histopathology. Representative retired breeders had skin collected from the back, abdomen, eyelids, muzzle, ears, tail, and lower limbs including the nails. To date, 169 novel mutant lines were reviewed and of these, only one was found to have a relatively minor sebaceous gland abnormality associated with follicular dystrophy. The B6N(Cg)-Far2tm2b(KOMP)Wtsi/2J strain, had lesions affecting sebaceous glands with what appeared to be a secondary follicular dystrophy. A second line, B6N(Cg)-Ppp1r9btm1.1(KOMP)Vlcg/J, had follicular dystrophy limited to many but not all mystacial vibrissae in heterozygous but not homozygous mutant mice, suggesting that this was a nonspecific background lesion. We discuss potential reasons for the low frequency of skin and adnexal phenotypes in mice from this project in comparison to those seen in human Mendelian diseases, and suggest alternative approaches to identification of human disease-relevant models.


A novel animal model for pseudoxanthoma elasticum: the KK/HlJ mouse.

  • Qiaoli Li‎ et al.
  • The American journal of pathology‎
  • 2012‎

Pseudoxanthoma elasticum is a multisystem ectopic mineralization disorder caused by mutations in the ABCC6 gene. A mouse model with targeted ablation of the corresponding gene (Abcc6(tm1JfK)) develops ectopic mineralization on the dermal sheath of vibrissae as biomarker of the progressive mineralization disorder. Survey of 31 mouse strains in a longitudinal aging study has identified three mouse strains with similar ectopic mineralization of the vibrissae, particularly the KK/HlJ strain. We report here that this mouse strain depicts, in addition to ectopic mineralization of the dermal sheath of vibrissae, mineral deposits in a number of internal organs. Energy dispersive X-ray analysis and topographic mapping found the presence of calcium and phosphate as the principal ions in the mineral deposits, similar to that in Abcc6(tm1JfK) mice, suggesting the presence of calcium hydroxyapatite. The mineralization was associated with a splice junction mutation at the 3' end of exon 14 of the Abcc6 gene, resulting in a 5-bp deletion from the coding region and causing frame-shift of translation. As a consequence, essentially no Abcc6 protein was detected in the liver of the KK/HlJ mice, similar to that in Abcc6(tm1JfK) mice. Collectively, our studies found that the KK/HlJ mouse strain is characterized by ectopic mineralization due to a mutation in the Abcc6 gene and therefore provides a novel model system to study pseudoxanthoma elasticum.


A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming.

  • Padraic G Fallon‎ et al.
  • Nature genetics‎
  • 2009‎

Loss-of-function mutations in the FLG (filaggrin) gene cause the semidominant keratinizing disorder ichthyosis vulgaris and convey major genetic risk for atopic dermatitis (eczema), eczema-associated asthma and other allergic phenotypes. Several low-frequency FLG null alleles occur in Europeans and Asians, with a cumulative frequency of approximately 9% in Europe. Here we report a 1-bp deletion mutation, 5303delA, analogous to common human FLG mutations, within the murine Flg gene in the spontaneous mouse mutant flaky tail (ft). We demonstrate that topical application of allergen to mice homozygous for this mutation results in cutaneous inflammatory infiltrates and enhanced cutaneous allergen priming with development of allergen-specific antibody responses. These data validate flaky tail as a useful model of filaggrin deficiency and provide experimental evidence for the hypothesis that antigen transfer through a defective epidermal barrier is a key mechanism underlying elevated IgE sensitization and initiation of cutaneous inflammation in humans with filaggrin-related atopic disease.


Lipidomic Profiling of the Epidermis in a Mouse Model of Dermatitis Reveals Sexual Dimorphism and Changes in Lipid Composition before the Onset of Clinical Disease.

  • Jackeline Franco‎ et al.
  • Metabolites‎
  • 2020‎

Atopic dermatitis (AD) is a multifactorial disease associated with alterations in lipid composition and organization in the epidermis. Multiple variants of AD exist with different outcomes in response to therapies. The evaluation of disease progression and response to treatment are observational assessments with poor inter-observer agreement highlighting the need for molecular markers. SHARPIN-deficient mice (Sharpincpdm) spontaneously develop chronic proliferative dermatitis with features similar to AD in humans. To study the changes in the epidermal lipid-content during disease progression, we tested 72 epidermis samples from three groups (5-, 7-, and 10-weeks old) of cpdm mice and their WT littermates. An agnostic mass-spectrometry strategy for biomarker discovery termed multiple-reaction monitoring (MRM)-profiling was used to detect and monitor 1,030 lipid ions present in the epidermis samples. In order to select the most relevant ions, we utilized a two-tiered filter/wrapper feature-selection strategy. Lipid categories were compressed, and an elastic-net classifier was used to rank and identify the most predictive lipid categories for sex, phenotype, and disease stages of cpdm mice. The model accurately classified the samples based on phospholipids, cholesteryl esters, acylcarnitines, and sphingolipids, demonstrating that disease progression cannot be defined by one single lipid or lipid category.


Estrogen regulates the expression of retinoic acid synthesis enzymes and binding proteins in mouse skin.

  • Helen B Everts‎ et al.
  • Nutrition research (New York, N.Y.)‎
  • 2021‎

Topical 17-beta-estradiol (E2) regulates the hair cycle, hair shaft differentiation, and sebum production. Vitamin A also regulates sebum production. Vitamin A metabolism proteins localized to the pilosebaceous unit (PSU; hair follicle and sebaceous gland); and were regulated by E2 in other tissues. This study tests the hypothesis that E2 also regulates vitamin A metabolism in the PSU. First, aromatase and estrogen receptors localized to similar sites as retinoid metabolism proteins during mid-anagen. Next, female and male wax stripped C57BL/6J mice were topically treated with E2, the estrogen receptor antagonist ICI 182,780 (ICI), letrozole, E2 plus letrozole, or vehicle control (acetone) during mid-anagen. E2 or one of its inhibitors regulated most of the vitamin A metabolism genes and proteins examined in a sex-dependent manner. Most components were higher in females and reduced with ICI in females. ICI reductions occurred in the premedulla, sebaceous gland, and epidermis. Reduced E2 also reduced RA receptors in the sebaceous gland and bulge in females. However, reduced E2 increased the number of retinal dehydrogenase 2 positive hair follicle associated dermal dendritic cells in males. These results suggest that estrogen regulates vitamin A metabolism in the skin. Interactions between E2 and vitamin A have implications in acne treatment, hair loss, and skin immunity.


Crisp1 and alopecia areata in C3H/HeJ mice.

  • John P Sundberg‎ et al.
  • Experimental and molecular pathology‎
  • 2014‎

Alopecia areata (AA), a cell mediated autoimmune disease, is the second most common form of hair loss in humans. While the autoimmune disease is responsible for the underlying pathogenesis, the alopecia phenotype is ultimately due to hair shaft fragility and breakage associated with structural deficits. Quantitative trait genetic analyses using the C3H/HeJ mouse AA model identified cysteine-rich secretory protein 1 (Crisp1), a hair shaft structural protein, as a candidate gene within the major AA locus. Crisp1 transcripts in the skin at various times during disease development were barely detectable. In situ hybridization identified Crisp1 expression within the medulla of hair shafts from clinically normal strains of mice but not C3H/HeJ mice with AA. Follow-up work with 5-day-old C3H/HeJ mice with normal hair also had essentially no expression of Crisp1. Other non-inflammatory based follicular dystrophy mouse models with similar hair shaft abnormalities also have little or no Crisp1 expression. Shotgun proteomics, used to determine strain difference in hair proteins, confirmed that there was very little CRISP1 within normal C3H/HeJ mouse hair in comparison to 11 other strains. However, mutant mice with hair medulla defects also had undetectable levels of CRISP1 in their hair. Crisp1 null mice had normal skin, hair follicles, and hair shafts indicating that the lack of the CRISP1 protein does not translate directly into defects in the hair shaft or hair follicle. These results suggest that CRISP1 may be an important structural component of mouse hair and that its strain-specific dysregulation may indicate a predisposition to hair shaft disease such as AA.


DermO; an ontology for the description of dermatologic disease.

  • Hannah M Fisher‎ et al.
  • Journal of biomedical semantics‎
  • 2016‎

There have been repeated initiatives to produce standard nosologies and terminologies for cutaneous disease, some dedicated to the domain and some part of bigger terminologies such as ICD-10. Recently, formally structured terminologies, ontologies, have been widely developed in many areas of biomedical research. Primarily, these address the aim of providing comprehensive working terminologies for domains of knowledge, but because of the knowledge contained in the relationships between terms they can also be used computationally for many purposes.


SHARPIN is essential for cytokine production, NF-κB signaling, and induction of Th1 differentiation by dendritic cells.

  • Zhe Wang‎ et al.
  • PloS one‎
  • 2012‎

Spontaneous mutations of the Sharpin (SHANK-associated RH domain-interacting protein, other aliases: Rbckl1, Sipl1) gene in mice result in systemic inflammation that is characterized by chronic proliferative dermatitis and dysregulated secretion of T helper1 (Th1) and Th2 cytokines. The cellular and molecular mechanisms underlying this inflammatory phenotype remain elusive. Dendritic cells may contribute to the initiation and progression of the phenotype of SHARPIN-deficient mice because of their pivotal role in innate and adaptive immunity. Here we show by flow cytometry that SHARPIN- deficiency did not alter the distribution of different DC subtypes in the spleen. In response to TOLL-like receptor (TLR) agonists LPS and poly I:C, cultured bone marrow-derived dendritic cells (BMDC) from WT and mutant mice exhibited similar increases in expression of co-stimulatory molecules CD40, CD80, and CD86. However, stimulated SHARPIN-deficient BMDC had reduced transcription and secretion of pro-inflammatory mediators IL6, IL12P70, GMCSF, and nitric oxide. Mutant BMDC had defective activation of NF-κB signaling, whereas the MAPK1/3 (ERK1/2) and MAPK11/12/13/14 (p38 MAP kinase isoforms) and TBK1 signaling pathways were intact. A mixed lymphocyte reaction showed that mutant BMDC only induced a weak Th1 immune response but stimulated increased Th2 cytokine production from allogeneic naïve CD4(+) T cells. In conclusion, loss of Sharpin in mice significantly affects the immune function of DC and this may partially account for the systemic inflammation and Th2-biased immune response.


Chronic proliferative dermatitis in Sharpin null mice: development of an autoinflammatory disease in the absence of B and T lymphocytes and IL4/IL13 signaling.

  • Christopher S Potter‎ et al.
  • PloS one‎
  • 2014‎

SHARPIN is a key regulator of NFKB and integrin signaling. Mice lacking Sharpin develop a phenotype known as chronic proliferative dermatitis (CPDM), typified by progressive epidermal hyperplasia, apoptosis of keratinocytes, cutaneous and systemic eosinophilic inflammation, and hypoplasia of secondary lymphoid organs. Rag1(-/-) mice, which lack mature B and T cells, were crossed with Sharpin(-/-) mice to examine the role of lymphocytes in CDPM. Although inflammation in the lungs, liver, and joints was reduced in these double mutant mice, dermatitis was not reduced in the absence of functional lymphocytes, suggesting that lymphocytes are not primary drivers of the inflammation in the skin. Type 2 cytokine expression is increased in CPDM. In an attempt to reduce this aspect of the phenotype, Il4ra(-/-) mice, unresponsive to both IL4 and IL13, were crossed with Sharpin(-/-) mice. Double homozygous Sharpin(-/-) , Il4ra(-/-) mice developed an exacerbated granulocytic dermatitis, acute system inflammation, as well as hepatic necrosis and mineralization. High expression of CHI3L4, normally seen in CPDM skin, was abolished in Sharpin(-/-) , Il4ra(-/-) double mutant mice indicating the crucial role of IL4 and IL13 in the expression of this protein. Cutaneous eosinophilia persisted in Sharpin(-/-) , Il4ra(-/-) mice, although expression of Il5 mRNA was reduced and the expression of Ccl11 and Ccl24 was completely abolished. TSLP and IL33 were both increased in the skin of Sharpin(-/-) mice and this was maintained in Sharpin(-/-) , Il4ra(-/-) mice suggesting a role for TSLP and IL33 in the eosinophilic dermatitis in SHARPIN-deficient mice. These studies indicate that cutaneous inflammation in SHARPIN-deficient mice is autoinflammatory in nature developing independently of B and T lymphocytes, while the systemic inflammation seen in CPDM has a strong lymphocyte-dependent component. Both the cutaneous and systemic inflammation is enhanced by loss of IL4 and IL13 signaling indicating that these cytokines normally play an anti-inflammatory role in SHARPIN-deficient mice.


Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse.

  • Tia DiTommaso‎ et al.
  • PLoS genetics‎
  • 2014‎

The skin is a highly regenerative organ which plays critical roles in protecting the body and sensing its environment. Consequently, morbidity and mortality associated with skin defects represent a significant health issue. To identify genes important in skin development and homeostasis, we have applied a high throughput, multi-parameter phenotype screen to the conditional targeted mutant mice generated by the Wellcome Trust Sanger Institute's Mouse Genetics Project (Sanger-MGP). A total of 562 different mouse lines were subjected to a variety of tests assessing cutaneous expression, macroscopic clinical disease, histological change, hair follicle cycling, and aberrant marker expression. Cutaneous lesions were associated with mutations in 23 different genes. Many of these were not previously associated with skin disease in the organ (Mysm1, Vangl1, Trpc4ap, Nom1, Sparc, Farp2, and Prkab1), while others were ascribed new cutaneous functions on the basis of the screening approach (Krt76, Lrig1, Myo5a, Nsun2, and Nf1). The integration of these skin specific screening protocols into the Sanger-MGP primary phenotyping pipelines marks the largest reported reverse genetic screen undertaken in any organ and defines approaches to maximise the productivity of future projects of this nature, while flagging genes for further characterisation.


Loss of function of the mouse Sharpin gene results in Peyer's patch regression.

  • Rosemarie Seymour‎ et al.
  • PloS one‎
  • 2013‎

Peyer's patches (PP) are an important component in the immune response against intestinal pathogens. Two independent, spontaneous mutations in the mouse Sharpin gene (Sharpin(cpdm) and Sharpin(cpdm-Dem)) result in the absence of PP and disrupted splenic white pulp in adult mice, although a full complement of lymph nodes is present. Here we report that rudimentary PP begin to develop in Sharpin(cpdm) mice during embryogenesis, but lack the organizational patterns that are typical of this tissue. In the present study, small intestines examined at weekly intervals from birth to maturity showed spontaneous regression of PP in mutant mice with concurrent infiltration of granulocytes. At 5 to 6 weeks of age, only indistinct remnants of granulocytic accumulations remain. Transplantation of normal bone marrow into Sharpin(cpdm) mice at 7 days of age did not prevent regression of PP in bone marrow chimeras examined at 7 to 8 weeks of age. These findings indicate that SHARPIN expression is required for the normal development and maintenance, but not initiation, of PP.


Isolation and cloning of a papillomavirus from a North American porcupine by using multiply primed rolling-circle amplification: the Erethizon dorsatum papillomavirus type 1.

  • Annabel Rector‎ et al.
  • Virology‎
  • 2005‎

The complete genome of a novel papillomavirus was isolated from a cutaneous papillomatous lesion of a North American porcupine (Erethizon dorsatum) using multiply primed rolling-circle amplification (RCA). The nucleotide sequence, genome organization, and phylogenetic position of the Erethizon dorsatum papillomavirus type 1 (EdPV-1) were determined. EdPV-1 is only distantly related to other benign cutaneous papillomavirus sequences and is the first member of the novel Sigma papillomavirus genus.


Mouse genome-wide association and systems genetics identifies Lhfp as a regulator of bone mass.

  • Larry D Mesner‎ et al.
  • PLoS genetics‎
  • 2019‎

Bone mineral density (BMD) is a strong predictor of osteoporotic fracture. It is also one of the most heritable disease-associated quantitative traits. As a result, there has been considerable effort focused on dissecting its genetic basis. Here, we performed a genome-wide association study (GWAS) in a panel of inbred strains to identify associations influencing BMD. This analysis identified a significant (P = 3.1 x 10-12) BMD locus on Chromosome 3@52.5 Mbp that replicated in two separate inbred strain panels and overlapped a BMD quantitative trait locus (QTL) previously identified in a F2 intercross. The association mapped to a 300 Kbp region containing four genes; Gm2447, Gm20750, Cog6, and Lhfp. Further analysis found that Lipoma HMGIC Fusion Partner (Lhfp) was highly expressed in bone and osteoblasts. Furthermore, its expression was regulated by a local expression QTL (eQTL), which overlapped the BMD association. A co-expression network analysis revealed that Lhfp was strongly connected to genes involved in osteoblast differentiation. To directly evaluate its role in bone, Lhfp deficient mice (Lhfp-/-) were created using CRISPR/Cas9. Consistent with genetic and network predictions, bone marrow stromal cells (BMSCs) from Lhfp-/- mice displayed increased osteogenic differentiation. Lhfp-/- mice also had elevated BMD due to increased cortical bone mass. Lastly, we identified SNPs in human LHFP that were associated (P = 1.2 x 10-5) with heel BMD. In conclusion, we used GWAS and systems genetics to identify Lhfp as a regulator of osteoblast activity and bone mass.


Variable patterns of ectopic mineralization in Enpp1asj-2J mice, a model for generalized arterial calcification of infancy.

  • Sarah Y Siu‎ et al.
  • Oncotarget‎
  • 2016‎

Generalized arterial calcification of infancy (GACI) is an autosomal recessive disorder characterized by early onset of extensive mineralization of the cardiovascular system. The classical forms of GACI are caused by mutations in the ENPP1 gene, encoding a membrane-bound pyrophosphatase/phosphodiesterase that hydrolyzes ATP to AMP and inorganic pyrophosphate. The asj-2J mouse harboring a spontaneous mutation in the Enpp1 gene has been characterized as a model for GACI. These mutant mice develop ectopic mineralization in skin and vascular connective tissues as well as in cartilage and collagen-rich tendons and ligaments. This study examined in detail the temporal ectopic mineralization phenotype of connective tissues in this mouse model, utilizing a novel cryo-histological method that does not require decalcification of bones. The wild type, heterozygous, and homozygous mice were administered fluorescent mineralization labels at 4 weeks (calcein), 10 weeks (alizarin complexone), and 11 weeks of age (demeclocycline). Twenty-four hours later, outer ears, muzzle skin, trachea, aorta, shoulders, and vertebrae were collected from these mice and examined for progression of mineralization. The results revealed differential timeline for disease initiation and progression in various tissues of this mouse model. It also highlights the advantages of cryo-histological fluorescent imaging technique to study mineral deposition in mouse models of ectopic mineralization disorders.


Quantitative evaluation of ontology design patterns for combining pathology and anatomy ontologies.

  • Sarah M Alghamdi‎ et al.
  • Scientific reports‎
  • 2019‎

Data are increasingly annotated with multiple ontologies to capture rich information about the features of the subject under investigation. Analysis may be performed over each ontology separately, but recently there has been a move to combine multiple ontologies to provide more powerful analytical possibilities. However, it is often not clear how to combine ontologies or how to assess or evaluate the potential design patterns available. Here we use a large and well-characterized dataset of anatomic pathology descriptions from a major study of aging mice. We show how different design patterns based on the MPATH and MA ontologies provide orthogonal axes of analysis, and perform differently in over-representation and semantic similarity applications. We discuss how such a data-driven approach might be used generally to generate and evaluate ontology design patterns.


Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis.

  • Ning Yang‎ et al.
  • Development (Cambridge, England)‎
  • 2015‎

Hair follicle morphogenesis requires precisely controlled reciprocal communications, including hedgehog (Hh) signaling. Activation of the Hh signaling pathway relies on the primary cilium. Disrupting ciliogenesis results in hair follicle morphogenesis defects due to attenuated Hh signaling; however, the loss of cilia makes it impossible to determine whether hair follicle phenotypes in these cilia mutants are caused by the loss of cilia, disruption of Hh signaling, or a combination of these events. In this study, we characterized the function of Ift27, which encodes a subunit of intraflagellar transport (IFT) complex B. Hair follicle morphogenesis of Ift27-null mice was severely impaired, reminiscent of phenotypes observed in cilia and Hh mutants. Furthermore, the Hh signaling pathway was attenuated in Ift27 mutants, which was in association with abnormal ciliary trafficking of SMO and GLI2, and impaired processing of Gli transcription factors; however, formation of the ciliary axoneme was unaffected. The ciliary localization of IFT25 (HSPB11), the binding partner of IFT27, was disrupted in Ift27 mutant cells, and Ift25-null mice displayed hair follicle phenotypes similar to those of Ift27 mutants. These data suggest that Ift27 and Ift25 operate in a genetically and functionally dependent manner during hair follicle morphogenesis. This study suggests that the molecular trafficking machineries underlying ciliogenesis and Hh signaling can be segregated, thereby providing important insights into new avenues of inhibiting Hh signaling, which might be adopted in the development of targeted therapies for Hh-dependent cancers, such as basal cell carcinoma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: