Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Partial loss of Tip60 slows mid-stage neurodegeneration in a spinocerebellar ataxia type 1 (SCA1) mouse model.

  • Kristin M Gehrking‎ et al.
  • Human molecular genetics‎
  • 2011‎

Spinocerebellar ataxia type 1 (SCA1) is one of nine dominantly inherited neurodegenerative diseases caused by polyglutamine tract expansion. In SCA1, the expanded polyglutamine tract is in the ataxin-1 (ATXN1) protein. ATXN1 is part of an in vivo complex with retinoid acid receptor-related orphan receptor alpha (Rora) and the acetyltransferase tat-interactive protein 60 kDa (Tip60). ATXN1 and Tip60 interact directly via the ATXN1 and HMG-box protein 1 (AXH) domain of ATXN1. Moreover, the phospho-mimicking Asp amino acid at position 776, previously shown to enhance pathogenesis, increases the ability of ATXN1 to interact with Tip60. Using a genetic approach, the biological relevance of the ATXN1/Tip60 interaction was assessed by crossing ATXN1[82Q] mice with Tip60(+/-)animals. Partial Tip60 loss increased Rora and Rora-mediated gene expression and delayed ATXN1[82]-mediated cerebellar degeneration during mid-stage disease progression. These results suggested a specific, temporal role for Tip60 during disease progression. We also showed that genetic background modulated ATXN1[82Q]-induced phenotypes. Of interest, these latter studies showed that some phenotypes are enhanced on a mixed background while others are suppressed.


Allele compensation in tip60+/- mice rescues white adipose tissue function in vivo.

  • Yuan Gao‎ et al.
  • PloS one‎
  • 2014‎

Adipose tissue is a key regulator of energy homestasis. The amount of adipose tissue is largely determined by adipocyte differentiation (adipogenesis), a process that is regulated by the concerted actions of multiple transcription factors and cofactors. Based on in vitro studies in murine 3T3-L1 preadipocytes and human primary preadipocytes, the transcriptional cofactor and acetyltransferase Tip60 was recently identified as an essential adipogenic factor. We therefore investigated the role of Tip60 on adipocyte differentiation and function, and possible consequences on energy homeostasis, in vivo. Because homozygous inactivation results in early embryonic lethality, Tip60+/- mice were used. Heterozygous inactivation of Tip60 had no effect on body weight, despite slightly higher food intake by Tip60+/- mice. No major effects of heterozygous inactivation of Tip60 were observed on adipose tissue and liver, and Tip60+/- displayed normal glucose tolerance, both on a low fat and a high fat diet. While Tip60 mRNA was reduced to 50% in adipose tissue, the protein levels were unaltered, suggesting compensation by the intact allele. These findings indicate that the in vivo role of Tip60 in adipocyte differentiation and function cannot be properly addressed in Tip60+/- mice, but requires the generation of adipose tissue-specific knock out animals or specific knock-in mice.


Depletion of Tip60 from In Vivo Cardiomyocytes Increases Myocyte Density, Followed by Cardiac Dysfunction, Myocyte Fallout and Lethality.

  • Joseph B Fisher‎ et al.
  • PloS one‎
  • 2016‎

Tat-interactive protein 60 (Tip60), encoded by the Kat5 gene, is a member of the MYST family of acetyltransferases. Cancer biology studies have shown that Tip60 induces the DNA damage response, apoptosis, and cell-cycle inhibition. Although Tip60 is expressed in the myocardium, its role in cardiomyocytes (CMs) is unclear. Earlier studies here showed that application of cardiac stress to globally targeted Kat5+/-haploinsufficient mice resulted in inhibition of apoptosis and activation of the CM cell-cycle, despite only modest reduction of Tip60 protein levels. It was therefore of interest to ascertain the effects of specifically and substantially depleting Tip60 from CMs using Kat5LoxP/-;Myh6-Cre mice in the absence of stress. We report initial findings using this model, in which the effects of specifically depleting Tip60 protein from ventricular CMs, beginning at early neonatal stages, were assessed in 2-12 week-old mice. Although 5'-bromodeoxyuridine immunostaining indicated that CM proliferation was not altered at any of these stages, CM density was increased in 2 week-old ventricles, which persisted in 4 week-old hearts when TUNEL staining revealed inhibition of apoptosis. By week 4, levels of connexin-43 were depleted, and its patterning was dysmorphic, concomitant with an increase in cardiac hypertrophy marker expression and interstitial fibrosis. This was followed by systolic dysfunction at 8 weeks, after which extensive apoptosis and CM fallout occurred, followed by lethality as mice approached 12 weeks of age. In summary, chronic depletion of Tip60 from the ventricular myocardium beginning at early stages of neonatal heart development causes CM death after 8 weeks; hence, Tip60 protein has a crucial function in the heart.


Stress-induced cell-cycle activation in Tip60 haploinsufficient adult cardiomyocytes.

  • Joseph B Fisher‎ et al.
  • PloS one‎
  • 2012‎

Tat-interactive protein 60 (Tip60) is a member of the MYST family of histone acetyltransferases. Studies using cultured cells have shown that Tip60 has various functions including DNA repair, apoptosis and cell-cycle regulation. We globally ablated the Tip60 gene (Htatip), observing that Tip60-null embryos die at the blastocyst stage (Hu et al. Dev.Dyn.238:2912;2009). Although adult heterozygous (Tip60(+/-)) mice reproduce normally without a haploinsufficient phenotype, stress caused by Myc over-expression induced B-cell lymphoma in Tip60(+/-) adults, suggesting that Tip60 is a tumor suppressor (Gorrini et al. Nature 448:1063;2007). These findings prompted assessment of whether Tip60, alternative splicing of which generates two predominant isoforms termed Tip60α and Tip60β, functions to suppress the cell-cycle in adult cardiomyocytes.


Activin-A and Bmp4 levels modulate cell type specification during CHIR-induced cardiomyogenesis.

  • Min-Su Kim‎ et al.
  • PloS one‎
  • 2015‎

The use of human pluripotent cell progeny for cardiac disease modeling, drug testing and therapeutics requires the ability to efficiently induce pluripotent cells into the cardiomyogenic lineage. Although direct activation of the Activin-A and/or Bmp pathways with growth factors yields context-dependent success, recent studies have shown that induction of Wnt signaling using low molecular weight molecules such as CHIR, which in turn induces the Activin-A and Bmp pathways, is widely effective. To further enhance the reproducibility of CHIR-induced cardiomyogenesis, and to ultimately promote myocyte maturation, we are using exogenous growth factors to optimize cardiomyogenic signaling downstream of CHIR induction. As indicated by RNA-seq, induction with CHIR during Day 1 (Days 0-1) was followed by immediate expression of Nodal ligands and receptors, followed later by Bmp ligands and receptors. Co-induction with CHIR and high levels of the Nodal mimetic Activin-A (50-100 ng/ml) during Day 0-1 efficiently induced definitive endoderm, whereas CHIR supplemented with Activin-A at low levels (10 ng/ml) consistently improved cardiomyogenic efficiency, even when CHIR alone was ineffective. Moreover, co-induction using CHIR and low levels of Activin-A apparently increased the rate of cardiomyogenesis, as indicated by the initial appearance of rhythmically beating cells by Day 6 instead of Day 8. By contrast, co-induction with CHIR plus low levels (3-10 ng/ml) of Bmp4 during Day 0-1 consistently and strongly inhibited cardiomyogenesis. These findings, which demonstrate that cardiomyogenic efficacy is improved by optimizing levels of CHIR-induced growth factors when applied in accord with their sequence of endogenous expression, are consistent with the idea that Nodal (Activin-A) levels toggle the entry of cells into the endodermal or mesodermal lineages, while Bmp levels regulate subsequent allocation into mesodermal cell types.


Trichloroethylene exposure during cardiac valvuloseptal morphogenesis alters cushion formation and cardiac hemodynamics in the avian embryo.

  • Victoria J Drake‎ et al.
  • Environmental health perspectives‎
  • 2006‎

It is controversial whether trichloroethylene (TCE) is a cardiac teratogen. We exposed chick embryos to 0, 0.4, 8, or 400 ppb TCE/egg during the period of cardiac valvuloseptal morphogenesis (2-3.3 days' incubation) . Embryo survival, valvuloseptal cellularity, and cardiac hemodynamics were evaluated at times thereafter. TCE at 8 and 400 ppb/egg reduced embryo survival to day 6.25 incubation by 40-50%. At day 4.25, increased proliferation and hypercellularity were observed within the atrioventricular and outflow tract primordia after 8 and 400 ppb TCE. Doppler ultrasound revealed that the dorsal aortic and atrioventricular blood flows were reduced by 23% and 30%, respectively, after exposure to 8 ppb TCE. Equimolar trichloroacetic acid (TCA) was more potent than TCE with respect to increasing mortality and causing valvuloseptal hypercellularity. These results independently confirm that TCE disrupts cardiac development of the chick embryo and identifies valvuloseptal development as a period of sensitivity. The hypercellular valvuloseptal profile is consistent with valvuloseptal heart defects associated with TCE exposure. This is the first report that TCA is a cardioteratogen for the chick and the first report that TCE exposure depresses cardiac function. Valvuloseptal hypercellularity may narrow the cardiac orifices, which reduces blood flow through the heart, thereby compromising cardiac output and contributing to increased mortality. The altered valvuloseptal formation and reduced hemodynamics seen here are consistent with such an outcome. Notably, these effects were observed at a TCE exposure (8 ppb) that is only slightly higher than the U.S. Environmental Protection Agency maximum containment level for drinking water (5 ppb) .


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: