Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

Azithromycin drives alternative macrophage activation and improves recovery and tissue sparing in contusion spinal cord injury.

  • Bei Zhangā€ˇ et al.
  • Journal of neuroinflammationā€ˇ
  • 2015ā€ˇ

Macrophages persist indefinitely at sites of spinal cord injury (SCI) and contribute to both pathological and reparative processes. While the alternative, anti-inflammatory (M2) phenotype is believed to promote cell protection, regeneration, and plasticity, pro-inflammatory (M1) macrophages persist after SCI and contribute to protracted cell and tissue loss. Thus, identifying non-invasive, clinically viable, pharmacological therapies for altering macrophage phenotype is a challenging, yet promising, approach for treating SCI. Azithromycin (AZM), a commonly used macrolide antibiotic, drives anti-inflammatory macrophage activation in rodent models of inflammation and in humans with cystic fibrosis.


Macrolide derivatives reduce proinflammatory macrophage activation and macrophage-mediated neurotoxicity.

  • Bei Zhangā€ˇ et al.
  • CNS neuroscience & therapeuticsā€ˇ
  • 2019ā€ˇ

Azithromycin (AZM) and other macrolide antibiotics are applied as immunomodulatory treatments for CNS disorders. The immunomodulatory and antibiotic properties of AZM are purportedly independent.


Pioglitazone treatment following spinal cord injury maintains acute mitochondrial integrity and increases chronic tissue sparing and functional recovery.

  • Samir P Patelā€ˇ et al.
  • Experimental neurologyā€ˇ
  • 2017ā€ˇ

Pioglitazone is an FDA-approved PPAR-Ī³ agonist drug used to treat diabetes, and it has demonstrated neuroprotective effects in multiple models of central nervous system (CNS) injury. Acute treatment after spinal cord injury (SCI) in rats is reported to suppress neuroinflammation, rescue injured tissues, and improve locomotor recovery. In the current study, we additionally assessed the protective efficacy of pioglitazone treatment on acute mitochondrial respiration, as well as functional and anatomical recovery after contusion SCI in adult male C57BL/6 mice. Mice received either vehicle or pioglitazone (10mg/kg) at either 15min or 3h after injury (75kdyn at T9) followed by a booster at 24h post-injury. At 25h, mitochondria were isolated from spinal cord segments centered on the injury epicenters and assessed for their respiratory capacity. Results showed significantly compromised mitochondrial respiration 25h following SCI, but pioglitazone treatment that was initiated either at 15min or 3h post-injury significantly maintained mitochondrial respiration rates near sham levels. A second cohort of injured mice received pioglitazone at 15min post injury, then once a day for 5days post-injury to assess locomotor recovery and tissue sparing over 4weeks. Compared to vehicle, pioglitazone treatment resulted in significantly greater recovery of hind-limb function over time, as determined by serial locomotor BMS assessments and both terminal BMS subscores and gridwalk performance. Such improvements correlated with significantly increased grey and white matter tissue sparing, although pioglitazone treatment did not abrogate long-term injury-induced inflammatory microglia/macrophage responses. In sum, pioglitazone significantly increased functional neuroprotection that was associated with remarkable maintenance of acute mitochondrial bioenergetics after traumatic SCI. This sets the stage for dose-response and delayed administration studies to maximize pioglitazone's efficacy for SCI while elucidating the precise role that mitochondria play in governing its neuroprotection; the ultimate goal to develop novel therapeutics that specifically target mitochondrial dysfunction.


Effect of Sex on Motor Function, Lesion Size, and Neuropathic Pain after Contusion Spinal Cord Injury in Mice.

  • Katelyn McFarlaneā€ˇ et al.
  • Journal of neurotraumaā€ˇ
  • 2020ā€ˇ

Spinal cord injury (SCI) causes neurodegeneration, impairs locomotor function, and impacts the quality of life particularly in those individuals in whom neuropathic pain develops. Whether the time course of neurodegeneration, locomotor impairment, or neuropathic pain varies with sex, however, remains understudied. Therefore, the objective of this study in male and female C57BL/6 mice was to evaluate the following outcomes for six weeks after a 75-kdyn thoracic contusion SCI: locomotor function using the Basso Mouse Scale (BMS); spinal cord tissue sparing and rostral-caudal lesion length; and mechanical allodynia and heat hyperalgesia using hindpaw application of Von Frey filaments or radiant heat stimuli, respectively. Although motor function was largely similar between sexes, all of the males, but only half of the females, recovered plantar stepping. Rostral-caudal lesion length was shorter in females than in males. Mechanical allodynia and heat hyperalgesia after SCI developed in all animals, regardless of sex; there were no differences in pain outcomes between sexes. We conclude that contusion SCI yields subtle sex differences in mice depending on the outcome measure but no significant differences in behavioral signs of neuropathic pain.


Docosahexaenoic acid decreased neuroinflammation in rat pups after controlled cortical impact.

  • Michelle E Schoberā€ˇ et al.
  • Experimental neurologyā€ˇ
  • 2019ā€ˇ

Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children, yet specific therapies to treat TBI are lacking. Therapies that decrease the inflammatory response and enhance a reparative immune action may decrease oxidative damage and improve outcomes after TBI. Docosahexaenoic acid (DHA) modulates the immune response to injury in many organs. DHA given in the diet before injury decreased rat pup cognitive impairment, oxidative stress and white matter injury in our developmental TBI model using controlled cortical impact (CCI). Little is known about DHA effects on neuroinflammation in the developing brain. Further, it is not known if DHA given after developmental TBI exerts neuroprotective effects. We hypothesized that acute DHA treatment would decrease oxidative stress and improve cognitive outcome, associated with decreased pro-inflammatory activation of microglia, the brain's resident macrophages.


Mitochondria exert age-divergent effects on recovery from spinal cord injury.

  • Andrew N Stewartā€ˇ et al.
  • Experimental neurologyā€ˇ
  • 2021ā€ˇ

The extent that age-dependent mitochondrial dysfunction drives neurodegeneration is not well understood. This study tested the hypothesis that mitochondria contribute to spinal cord injury (SCI)-induced neurodegeneration in an age-dependent manner by using 2,4-dinitrophenol (DNP) to uncouple electron transport, thereby increasing cellular respiration and reducing reactive oxygen species (ROS) production. We directly compared the effects of graded DNP doses in 4- and 14-month-old (MO) SCI-mice and found DNP to have increased efficacy in mitochondria isolated from 14-MO animals. In vivo, all DNP doses significantly exacerbated 4-MO SCI neurodegeneration coincident with worsened recovery. In contrast, low DNP doses (1.0-mg/kg/day) improved tissue sparing, reduced ROS-associated 3-nitrotyrosine (3-NT) accumulation, and improved anatomical and functional recovery in 14-MO SCI-mice. By directly comparing the effects of DNP between ages we demonstrate that mitochondrial contributions to neurodegeneration diverge with age after SCI. Collectively, our data indicate an essential role of mitochondria in age-associated neurodegeneration.


Immunomodulatory Effects of Azithromycin Revisited: Potential Applications to COVID-19.

  • Vincent J Vendittoā€ˇ et al.
  • Frontiers in immunologyā€ˇ
  • 2021ā€ˇ

The rapid advancement of the COVID-19 pandemic has prompted an accelerated pursuit to identify effective therapeutics. Stages of the disease course have been defined by viral burden, lung pathology, and progression through phases of the immune response. Immunological factors including inflammatory cell infiltration and cytokine storm have been associated with severe disease and death. Many immunomodulatory therapies for COVID-19 are currently being investigated, and preliminary results support the premise of targeting the immune response. However, because suppressing immune mechanisms could also impact the clearance of the virus in the early stages of infection, therapeutic success is likely to depend on timing with respect to the disease course. Azithromycin is an immunomodulatory drug that has been shown to have antiviral effects and potential benefit in patients with COVID-19. Multiple immunomodulatory effects have been defined for azithromycin which could provide efficacy during the late stages of the disease, including inhibition of pro-inflammatory cytokine production, inhibition of neutrophil influx, induction of regulatory functions of macrophages, and alterations in autophagy. Here we review the published evidence of these mechanisms along with the current clinical use of azithromycin as an immunomodulatory therapeutic. We then discuss the potential impact of azithromycin on the immune response to COVID-19, as well as caution against immunosuppressive and off-target effects including cardiotoxicity in these patients. While azithromycin has the potential to contribute efficacy, its impact on the COVID-19 immune response requires additional characterization so as to better define its role in individualized therapy.


Myeloid Arginase 1 Insufficiency Exacerbates Amyloid-Ī² Associated Neurodegenerative Pathways and Glial Signatures in a Mouse Model of Alzheimer's Disease: A Targeted Transcriptome Analysis.

  • Chao Maā€ˇ et al.
  • Frontiers in immunologyā€ˇ
  • 2021ā€ˇ

Brain myeloid cells, include infiltrating macrophages and resident microglia, play an essential role in responding to and inducing neurodegenerative diseases, such as Alzheimer's disease (AD). Genome-wide association studies (GWAS) implicate many AD casual and risk genes enriched in brain myeloid cells. Coordinated arginine metabolism through arginase 1 (Arg1) is critical for brain myeloid cells to perform biological functions, whereas dysregulated arginine metabolism disrupts them. Altered arginine metabolism is proposed as a new biomarker pathway for AD. We previously reported Arg1 deficiency in myeloid biased cells using lysozyme M (LysM) promoter-driven deletion worsened amyloidosis-related neuropathology and behavioral impairment. However, it remains unclear how Arg1 deficiency in these cells impacts the whole brain to promote amyloidosis. Herein, we aim to determine how Arg1 deficiency driven by LysM restriction during amyloidosis affects fundamental neurodegenerative pathways at the transcriptome level. By applying several bioinformatic tools and analyses, we found that amyloid-Ī² (AĪ²) stimulated transcriptomic signatures in autophagy-related pathways and myeloid cells' inflammatory response. At the same time, myeloid Arg1 deficiency during amyloidosis promoted gene signatures of lipid metabolism, myelination, and migration of myeloid cells. Focusing on AĪ² associated glial transcriptomic signatures, we found myeloid Arg1 deficiency up-regulated glial gene transcripts that positively correlated with AĪ² plaque burden. We also observed that AĪ² preferentially activated disease-associated microglial signatures to increase phagocytic response, whereas myeloid Arg1 deficiency selectively promoted homeostatic microglial signature that is non-phagocytic. These transcriptomic findings suggest a critical role for proper Arg1 function during normal and pathological challenges associated with amyloidosis. Furthermore, understanding pathways that govern Arg1 metabolism may provide new therapeutic opportunities to rebalance immune function and improve microglia/macrophage fitness.


PTEN knockout using retrogradely transported AAVs transiently restores locomotor abilities in both acute and chronic spinal cord injury.

  • Andrew N Stewartā€ˇ et al.
  • Experimental neurologyā€ˇ
  • 2023ā€ˇ

Restoring function in chronic stages of spinal cord injury (SCI) has often been met with failure or reduced efficacy when regenerative strategies are delayed past the acute or sub-acute stages of injury. Restoring function in the chronically injured spinal cord remains a critical challenge. We found that a single injection of retrogradely transported adeno-associated viruses (AAVrg) to knockout the phosphatase and tensin homolog protein (PTEN) in chronic SCI can effectively target both damaged and spared axons and transiently restore locomotor functions in near-complete injury models. AAVrg's were injected to deliver cre recombinase and/or a red fluorescent protein (RFP) under the human Synapsin 1 promoter (hSyn1) into the spinal cords of C57BL/6 PTENFloxĪ”/Ī” mice to knockout PTEN (PTEN-KO) in a severe thoracic SCI crush model at both acute and chronic time points. PTEN-KO improved locomotor abilities in both acute and chronic SCI conditions over a 9-week period. Regardless of whether treatment was initiated at the time of injury (acute), or three months after SCI (chronic), mice with limited hindlimb joint movement gained hindlimb weight support after treatment. Interestingly, functional improvements were not sustained beyond 9Ā weeks coincident with a loss of RFP reporter-gene expression and a near-complete loss of treatment-associated functional recovery by 6Ā months post-treatment. Treatment effects were also specific to severely injured mice; animals with weight support at the time of treatment lost function over a 6-month period. Retrograde tracing with Fluorogold revealed viable neurons throughout the motor cortex despite a loss of RFP expression at 9Ā weeks post-PTEN-KO. However, few Fluorogold labeled neurons were detected within the motor cortex at 6Ā months post-treatment. BDA labeling from the motor cortex revealed a dense corticospinal tract (CST) bundle in all groups except chronically treated PTEN-KO mice, indicating a potential long-term toxic effect of PTEN-KO to neurons in the motor cortex which was corroborated by a loss of Ī²-tubulin III labeling above the lesion within spinal cords after PTEN-KO. PTEN-KO mice had significantly more Ī²-tubulin III labeled axons within the lesion when treatment was delivered acutely, but not chronically post-SCI. In conclusion, we have found that using AAVrg's to knockout PTEN is an effective manipulation capable of restoring motor functions in chronic SCI and can enhance axon growth of currently unidentified axon populations when delivered acutely after injury. However, the long-term consequences of PTEN-KO on neuronal health and viability should be further explored.


Tissue-resident macrophages specifically express Lactotransferrin and Vegfc during ear pinna regeneration in spiny mice.

  • Jennifer Simkinā€ˇ et al.
  • Developmental cellā€ˇ
  • 2024ā€ˇ

The details of how macrophages control different healing trajectories (regeneration vs. scar formation) remain poorly defined. Spiny mice (Acomys spp.) can regenerate external ear pinnae tissue, whereas lab mice (Mus musculus) form scar tissue in response to an identical injury. Here, we used this dual species system to dissect macrophage phenotypes between healing modes. We identified secreted factors from activated Acomys macrophages that induce a pro-regenerative phenotype in fibroblasts from both species. Transcriptional profiling of Acomys macrophages and subsequent inĀ vitro tests identified VEGFC, PDGFA, and Lactotransferrin (LTF) as potential pro-regenerative modulators. Examining macrophages inĀ vivo, we found that Acomys-resident macrophages secreted VEGFC and LTF, whereas Mus macrophages do not. Lastly, we demonstrate the requirement for VEGFC during regeneration and find that interrupting lymphangiogenesis delays blastema and new tissue formation. Together, our results demonstrate that cell-autonomous mechanisms govern how macrophages react to the same stimuli to differentially produce factors that facilitate regeneration.


Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment.

  • John C Genselā€ˇ et al.
  • Scientific reportsā€ˇ
  • 2017ā€ˇ

Spinal cord injury (SCI) triggers a heterogeneous macrophage response that when experimentally polarized toward alternative forms of activation (M2 macrophages) promotes tissue and functional recovery. There are limited pharmacological therapies that can drive this reparative inflammatory state. In the current study, we used in vitro systems to comprehensively defined markers of macrophages with known pathological (M1) and reparative (M2) properties in SCI. We then used these markers to objectively define the macrophage activation states after SCI in response to delayed azithromycin treatment. Mice were subjected to moderate-severe thoracic contusion SCI. Azithromycin or vehicle was administered beginning 30ā€‰minutes post-SCI and then daily for 3 or 7 days post injury (dpi). We detected a dose-dependent polarization toward purportedly protective M2 macrophages with daily AZM treatment. Specifically, AZM doses of 10, 40, or 160ā€‰mg/kg decreased M1 macrophage gene expression at 3ā€‰dpi while the lowest (10ā€‰mg/kg) and highest (160ā€‰mg/kg) doses increased M2 macrophage gene expression at 7ā€‰dpi. Azithromycin has documented immunomodulatory properties and is commonly prescribed to treat infections in SCI individuals. This work demonstrates the utility of objective, comprehensive macrophage gene profiling for evaluating immunomodulatory SCI therapies and highlights azithromycin as a promising agent for SCI treatment.


Macrophages are necessary for epimorphic regeneration in African spiny mice.

  • Jennifer Simkinā€ˇ et al.
  • eLifeā€ˇ
  • 2017ā€ˇ

How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration (Acomys cahirinus) and scarring (Mus musculus), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during regeneration. By depleting macrophages during injury, we demonstrate a functional requirement for these cells to stimulate regeneration. Importantly, the spatial distribution of activated macrophage subtypes was unique during regeneration with pro-inflammatory macrophages failing to infiltrate the regeneration blastema. Together, our results demonstrate an essential role for inflammatory cells to regulate a regenerative response.


Delayed Azithromycin Treatment Improves Recovery After Mouse Spinal Cord Injury.

  • Timothy J Kopperā€ˇ et al.
  • Frontiers in cellular neuroscienceā€ˇ
  • 2019ā€ˇ

After spinal cord injury (SCI), macrophages infiltrate into the lesion and can adopt a wide spectrum of activation states. However, the pro-inflammatory, pathological macrophage activation state predominates and contributes to progressive neurodegeneration. Azithromycin (AZM), an FDA approved macrolide antibiotic, has been demonstrated to have immunomodulatory properties in a variety of inflammatory conditions. Indeed, we previously observed that post-SCI AZM treatment reduces pro-inflammatory macrophage activation. Further, a combined pre- and post-injury treatment paradigm improved functional recovery from SCI. Therefore, for the current study, we hypothesize that post-injury AZM treatment will improve recovery from SCI. To test this hypothesis, we examined the therapeutic potential of delayed AZM treatment on locomotor, sensory, and anatomical recovery. We administered AZM beginning 30-min, 3-h, or 24-h following contusion SCI in female mice, and then daily for 7 days. AZM administration beginning 30-min and 3-h post-injury improved locomotor recovery with increased stepping function relative to vehicle controls. Further, delaying treatment for 30-min after SCI significantly reduced lesion pathology. Initiating AZM treatment 24-h post-injury was not therapeutically effective. Regardless of the timing of the initial treatment, AZM did not statistically reduce the development of neuropathic pain (mechanical allodynia) nor increase neuron survival. Collectively, these results add to a growing body of evidence supporting AZM's translational potential as a therapeutic agent for SCI and other neuroinflammatory conditions in which patients currently have very few options.


Stress Increases Peripheral Axon Growth and Regeneration through Glucocorticoid Receptor-Dependent Transcriptional Programs.

  • Jessica K Lerchā€ˇ et al.
  • eNeuroā€ˇ
  • 2017ā€ˇ

Stress and glucocorticoid (GC) release are common behavioral and hormonal responses to injury or disease. In the brain, stress/GCs can alter neuron structure and function leading to cognitive impairment. Stress and GCs also exacerbate pain, but whether a corresponding change occurs in structural plasticity of sensory neurons is unknown. Here, we show that in female mice (Mus musculus) basal GC receptor (Nr3c1, also known as GR) expression in dorsal root ganglion (DRG) sensory neurons is 15-fold higher than in neurons in canonical stress-responsive brain regions (M. musculus). In response to stress or GCs, adult DRG neurite growth increases through mechanisms involving GR-dependent gene transcription. In vivo, prior exposure to an acute systemic stress increases peripheral nerve regeneration. These data have broad clinical implications and highlight the importance of stress and GCs as novel behavioral and circulating modifiers of neuronal plasticity.


The effects of myelin on macrophage activation are phenotypic specific via cPLA2 in the context of spinal cord injury inflammation.

  • Timothy J Kopperā€ˇ et al.
  • Scientific reportsā€ˇ
  • 2021ā€ˇ

Spinal cord injury (SCI) produces chronic, pro-inflammatory macrophage activation that impairs recovery. The mechanisms driving this chronic inflammation are not well understood. Here, we detail the effects of myelin debris on macrophage physiology and demonstrate a novel, activation state-dependent role for cytosolic phospholipase-A2 (cPLA2) in myelin-mediated potentiation of pro-inflammatory macrophage activation. We hypothesized that cPLA2 and myelin debris are key mediators of persistent pro-inflammatory macrophage responses after SCI. To test this, we examined spinal cord tissue 28-days after thoracic contusion SCI in 3-month-old female mice and observed both cPLA2 activation and intracellular accumulation of lipid-rich myelin debris in macrophages. In vitro, we utilized bone marrow-derived macrophages to determine myelin's effects across a spectrum of activation states. We observed phenotype-specific responses with myelin potentiating only pro-inflammatory (LPSā€‰+ā€‰INF-Ī³; M1) macrophage activation, whereas myelin did not induce pro-inflammatory responses in unstimulated or anti-inflammatory (IL-4; M2) macrophages. Specifically, myelin increased levels of pro-inflammatory cytokines, reactive oxygen species, and nitric oxide production in M1 macrophages as well as M1-mediated neurotoxicity. PACOCF3 (cPLA2 inhibitor) blocked myelin's detrimental effects. Collectively, we provide novel spatiotemporal evidence that myelin and cPLA2 play an important role in the pathophysiology of SCI inflammation and the phenotype-specific response to myelin implicate diverse roles of myelin in neuroinflammatory conditions.


Stress exacerbates neuron loss and microglia proliferation in a rat model of excitotoxic lower motor neuron injury.

  • Denise A Pugaā€ˇ et al.
  • Brain, behavior, and immunityā€ˇ
  • 2015ā€ˇ

All individuals experience stress and hormones (e.g., glucocorticoids/GCs) released during stressful events can affect the structure and function of neurons. These effects of stress are best characterized for brain neurons; however, the mechanisms controlling the expression and binding affinity of glucocorticoid receptors in the spinal cord are different than those in the brain. Accordingly, whether stress exerts unique effects on spinal cord neurons, especially in the context of pathology, is unknown. Using a controlled model of focal excitotoxic lower motor neuron injury in rats, we examined the effects of acute or chronic variable stress on spinal cord motor neuron survival and glial activation. New data indicate that stress exacerbates excitotoxic spinal cord motor neuron loss and associated activation of microglia. In contrast, hypertrophy and hyperplasia of astrocytes and NG2+ glia were unaffected or were modestly suppressed by stress. Although excitotoxic lesions cause significant motor neuron loss and stress exacerbates this pathology, overt functional impairment did not develop in the relevant forelimb up to one week post-lesion. These data indicate that stress is a disease-modifying factor capable of altering neuron and glial responses to pathological challenges in the spinal cord.


An efficient and reproducible method for quantifying macrophages in different experimental models of central nervous system pathology.

  • Dustin J Donnellyā€ˇ et al.
  • Journal of neuroscience methodsā€ˇ
  • 2009ā€ˇ

Historically, microglia/macrophages are quantified in the pathological central nervous system (CNS) by counting cell profiles then expressing the data as cells/mm(2). However, because it is difficult to visualize individual cells in dense clusters and in most cases it is unimportant to know the absolute number of macrophages within lesioned tissue, alternative methods may be more efficient for quantifying the magnitude of the macrophage response in the context of different experimental variables (e.g., therapeutic intervention or time post-injury/infection). The present study provides the first in-depth comparison of different techniques commonly used to quantify microglial/macrophage reactions in the pathological spinal cord. Individuals from the same and different laboratories applied techniques of digital image analysis (DIA), standard cell profile counting and a computer-assisted cell counting method with unbiased sampling to quantify macrophages in focal inflammatory lesions, disseminated lesions caused by autoimmune inflammation or at sites of spinal trauma. Our goal was to find a simple, rapid and sensitive method with minimal variability between trials and users. DIA was consistently the least variable and most time-efficient method for assessing the magnitude of macrophage responses across lesions and between users. When used to evaluate the efficacy of an anti-inflammatory treatment, DIA was 5-35 x faster than cell counting and was sensitive enough to detect group differences while eliminating inter-user variability. Since lesions are clearly defined and single profiles of microglia/macrophages are difficult to discern in most pathological specimens of brain or spinal cord, DIA offers significant advantages over other techniques for quantifying activated macrophages.


Semi-automated Sholl analysis for quantifying changes in growth and differentiation of neurons and glia.

  • John C Genselā€ˇ et al.
  • Journal of neuroscience methodsā€ˇ
  • 2010ā€ˇ

There is a need to develop therapies that promote growth or remyelination of mammalian CNS axons. Although the feasibility of pre-clinical treatment strategies should be tested in animal models, in vitro assays are usually faster and less expensive. As a result, in vitro models are ideal for screening large numbers of potential therapeutics prior to use in more complex in vivo systems. In 1953, Sholl introduced a technique that is a reliable and sensitive method for quantifying indices of neurite outgrowth. However, application of the technique is limited because it is labor-intensive. Several methods have been developed to reduce the analysis time for the Sholl technique; but these methods require extensive pre-processing of digital images, they introduce user bias or they have not been compared to manual analysis to ensure accuracy. Here we describe a new, semi-automated Sholl technique for quantifying neuronal and glial process morphology. Using MetaMorph, we developed an unbiased analysis protocol that can be performed approximately 3x faster than manual quantification with a comparable level of accuracy regardless of cell morphology. The laborious image processing typical of most computer-aided analysis is avoided by embedding image correction functions into the automated portion of the analysis. The sensitivity and validity of the technique was confirmed by quantifying neuron growth treated with growth factors or oligodendroglial maturation in the presence or absence of thyroid hormone. Thus, this technique provides a rapid and sensitive method for quantifying changes in cell morphology and screening for treatment effects in multiple cell types in vitro.


Age decreases macrophage IL-10 expression: Implications for functional recovery and tissue repair in spinal cord injury.

  • Bei Zhangā€ˇ et al.
  • Experimental neurologyā€ˇ
  • 2015ā€ˇ

Macrophages with different activation states are present after spinal cord injury (SCI). M1 macrophages purportedly promote secondary injury processes while M2 cells support axon growth. The average age at the time of SCI has increased in recent decades, however, little is known about how different physiological factors contribute to macrophage activation states after SCI. Here we investigate the effect of age on IL-10, a key indicator of M2 macrophage activation. Following mild-moderate SCI in 4 and 14 month old (MO) mice we detected significantly reduced IL-10 expression with age in the injured spinal cord. Specifically, CD86/IL-10 positive macrophages, also known as M2b or regulatory macrophages, were reduced in 14 vs. 4 MO SCI animals. This age-dependent shift in macrophage phenotype was associated with impaired functional recovery and enhanced tissue damage in 14-month-old SCI mice. In vitro, M2b macrophages release anti-inflammatory cytokines without causing neurotoxicity, suggesting that imbalances in the M2b response in 14-month-old mice may be contributing to secondary injury processes. Our data indicate that age is an important factor that regulates SCI inflammation and recovery even to mild-moderate injury. Further, alterations in macrophage activation states may contribute to recovery and we have identified the M2b phenotype as a potential target for therapeutic intervention.


Advanced Age and Neurotrauma Diminish Glutathione and Impair Antioxidant Defense after Spinal Cord Injury.

  • Andrew N Stewartā€ˇ et al.
  • Journal of neurotraumaā€ˇ
  • 2022ā€ˇ

Advanced age at the time of spinal cord injury (SCI) exacerbates damage from reactive oxygen species (ROS). Mechanisms underlying this age-dependent response are not well understood and may arise from decreased antioxidant defense. We investigated how spinal cord levels of the antioxidant glutathione (GSH), and its regulation, change with age and SCI. GSH is used by GSH peroxidase to sequester ROS and is recycled by GSH reductase. Male and female, 4- and 14-month-old (MO) mice received a 60 kDyn contusion SCI, and the levels of GSH and its regulatory enzymes were evaluated at one and three days post-injury (dpi). The mice with SCI were treated with N-acetylcysteine-amide (NACA; 150ā€‰mg/kg), a cysteine supplement that increases GSH, to determine effects on functional and histological outcomes. GSH was decreased with older age in sham mice, and an SCI-dependent depletion was observed in 4-MO mice by three dpi. Neither age nor injury affected the abundance of proteins regulating GSH synthesis or recycling. GSH peroxidase activity, however, increased after SCI only in 4-MO mice. In contrast, GSH peroxidase activity was increased in 14-MO sham mice, indicating that spinal cords of older mice have an elevated oxidative state. Indeed, 14-MO sham mice had more oxidized protein (3-nitrotyrosine [3-NT]) within their spinal cords compared with 4-MO sham mice. Only 4-MO mice had significant injury-induced increases in 3-NT at three dpi. NACA treatment restored GSH and improved the redox environment in injured 4- and 14-MO mice at one dpi; however, three days of NACA delivery did not improve motor, sensory, or anatomical deficits at 28ā€‰dpi in 4-MO mice and trended toward toxicity in all outcomes in 14-MO mice. Our observation suggests that GSH levels at acute stages of SCI play a minimal role in age-dependent outcomes reported after SCI in mice. Collective results implicate elements of injury occurring after three dpi, such as inflammation, as key regulators of age-dependent effects.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: