Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Seipin Facilitates Triglyceride Flow to Lipid Droplet and Counteracts Droplet Ripening via Endoplasmic Reticulum Contact.

  • Veijo T Salo‎ et al.
  • Developmental cell‎
  • 2019‎

Seipin is an oligomeric integral endoplasmic reticulum (ER) protein involved in lipid droplet (LD) biogenesis. To study the role of seipin in LD formation, we relocalized it to the nuclear envelope and found that LDs formed at these new seipin-defined sites. The sites were characterized by uniform seipin-mediated ER-LD necks. At low seipin content, LDs only grew at seipin sites, and tiny, growth-incompetent LDs appeared in a Rab18-dependent manner. When seipin was removed from ER-LD contacts within 1 h, no lipid metabolic defects were observed, but LDs became heterogeneous in size. Studies in seipin-ablated cells and model membranes revealed that this heterogeneity arises via a biophysical ripening process, with triglycerides partitioning from smaller to larger LDs through droplet-bilayer contacts. These results suggest that seipin supports the formation of structurally uniform ER-LD contacts and facilitates the delivery of triglycerides from ER to LDs. This counteracts ripening-induced shrinkage of small LDs.


LDL cholesterol recycles to the plasma membrane via a Rab8a-Myosin5b-actin-dependent membrane transport route.

  • Kristiina Kanerva‎ et al.
  • Developmental cell‎
  • 2013‎

Mammalian cells acquire cholesterol, a major membrane constituent, via low-density lipoprotein (LDL) uptake. However, the mechanisms by which LDL cholesterol reaches the plasma membrane (PM) have remained obscure. Here, we applied LDL labeled with BODIPY cholesteryl linoleate to identify this pathway in living cells. The egress of BODIPY cholesterol (BC) from late endosomal (LE) organelles was dependent on acid lipase and Niemann-Pick C1 (NPC1) protein, as for natural cholesterol. We show that NPC1 was needed to recruit Rab8a to BC-containing LEs, and Rab8a enhanced the motility and segregation of BC- and CD63-positive organelles from lysosomes. The BC carriers docked to the cortical actin by a Rab8a- and Myosin5b (Myo5b)-dependent mechanism, typically in the proximity of focal adhesions (FAs). LDL increased the number and dynamics of FAs and stimulated cell migration in an acid lipase, NPC1, and Rab8a-dependent fashion, providing evidence that this cholesterol delivery route to the PM is important for cell movement.


FAT4 Fine-Tunes Kidney Development by Regulating RET Signaling.

  • Hongtao Zhang‎ et al.
  • Developmental cell‎
  • 2019‎

FAT4 mutations lead to several human diseases that disrupt the normal development of the kidney. However, the underlying mechanism remains elusive. In studying the duplex kidney phenotypes observed upon deletion of Fat4 in mice, we have uncovered an interaction between the atypical cadherin FAT4 and RET, a tyrosine kinase receptor essential for kidney development. Analysis of kidney development in Fat4-/- kidneys revealed abnormal ureteric budding and excessive RET signaling. Removal of one copy of the RET ligand Gdnf rescues Fat4-/- kidney development, supporting the proposal that loss of Fat4 hyperactivates RET signaling. Conditional knockout analyses revealed a non-autonomous role for Fat4 in regulating RET signaling. Mechanistically, we found that FAT4 interacts with RET through extracellular cadherin repeats. Importantly, expression of FAT4 perturbs the assembly of the RET-GFRA1-GDNF complex, reducing RET signaling. Thus, FAT4 interacts with RET to fine-tune RET signaling, establishing a juxtacrine mechanism controlling kidney development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: