Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Ivermectin metabolites reduce Anopheles survival.

  • Kevin C Kobylinski‎ et al.
  • Scientific reports‎
  • 2023‎

Ivermectin mass drug administration to humans or livestock is a potential vector control tool for malaria elimination. The mosquito-lethal effect of ivermectin in clinical trials exceeds that predicted from in vitro laboratory experiments, suggesting that ivermectin metabolites have mosquito-lethal effect. The three primary ivermectin metabolites in humans (i.e., M1 (3″-O-demethyl ivermectin), M3 (4-hydroxymethyl ivermectin), and M6 (3″-O-demethyl, 4-hydroxymethyl ivermectin) were obtained by chemical synthesis or bacterial modification/metabolism. Ivermectin and its metabolites were mixed in human blood at various concentrations, blood-fed to Anopheles dirus and Anopheles minimus mosquitoes, and mortality was observed daily for fourteen days. Ivermectin and metabolite concentrations were quantified by liquid chromatography linked with tandem mass spectrometry to confirm the concentrations in the blood matrix. Results revealed that neither the LC50 nor LC90 values differed between ivermectin and its major metabolites for An. dirus or An. minimus., Additionally, there was no substantial differences in the time to median mosquito mortality when comparing ivermectin and its metabolites, demonstrating an equal rate of mosquito killing between the compounds evaluated. These results demonstrate that ivermectin metabolites have a mosquito-lethal effect equal to the parent compound, contributing to Anopheles mortality after treatment of humans.


New insights into the Plasmodium vivax transcriptome using RNA-Seq.

  • Lei Zhu‎ et al.
  • Scientific reports‎
  • 2016‎

Historically seen as a benign disease, it is now becoming clear that Plasmodium vivax can cause significant morbidity. Effective control strategies targeting P. vivax malaria is hindered by our limited understanding of vivax biology. Here we established the P. vivax transcriptome of the Intraerythrocytic Developmental Cycle (IDC) of two clinical isolates in high resolution by Illumina HiSeq platform. The detailed map of transcriptome generates new insights into regulatory mechanisms of individual genes and reveals their intimate relationship with specific biological functions. A transcriptional hotspot of vir genes observed on chromosome 2 suggests a potential active site modulating immune evasion of the Plasmodium parasite across patients. Compared to other eukaryotes, P. vivax genes tend to have unusually long 5' untranslated regions and also present multiple transcription start sites. In contrast, alternative splicing is rare in P. vivax but its association with the late schizont stage suggests some of its significance for gene function. The newly identified transcripts, including up to 179 vir like genes and 3018 noncoding RNAs suggest an important role of these gene/transcript classes in strain specific transcriptional regulation.


Gut bacteriome and metabolome of Ascaris lumbricoides in patients.

  • Pavit Klomkliew‎ et al.
  • Scientific reports‎
  • 2022‎

The most frequent intestinal helminth infections in humans are attributed to Ascaris lumbricoides, and there are concerns over the anthelminthic resistance of this species. The gut microbiota has essential roles in host physiology. Therefore, discovering host-parasite-microbiota interactions could help develop alternative helminthiasis treatments. Additionally, these interactions are modulated by functional metabolites that can reveal the mechanisms of infection and disease progression. Thus, we aimed to investigate bacteriomes in the gut of helminths and fecal samples of patients via next-generation sequencing. Our results showed that infection intensity was associated with the bacterial composition of helminth guts but not with the intestinal bacteriome of human hosts. Moreover, the metabolomes of A. lumbricoides in the heavy and light ascariasis cases were characterized using ultra-high performance liquid chromatography/time-of-flight mass spectrometry. Increased levels of essential biomolecules, such as amino acids, lipids, and nucleotide precursors, were found in the guts of helminths isolated from heavily infected patients, implying that these metabolites are related to egg production and ascariasis pathogenicity. These findings are the first step towards a more complete understanding of the mechanisms by which the bacteriome of helminth guts affect their colonization and may reveal novel and more effective approaches to parasitic disease therapy.


Amino acid derangements in adults with severe falciparum malaria.

  • Stije J Leopold‎ et al.
  • Scientific reports‎
  • 2019‎

Amino acid derangements are common in severe falciparum malaria and have been associated with endothelial dysfunction (L-arginine), metabolic acidosis (alanine and lactate), and disease severity (phenylalanine and tryptophan metabolites). Whether these amino acid perturbations reflect isolated pathogenic mechanisms or if they are part of overall changes in amino acid metabolism is unclear. To investigate this, we prospectively simultaneously quantified a broad range of plasma free amino acids (PFAA) using HPLC-MRM-Mass spectrometry in relation to presenting symptoms in adults with severe malaria (n = 88), septicaemia (n = 88), uncomplicated malaria (n = 71), and healthy controls (n = 48) from Bangladesh. The total plasma concentration of measured amino acids was significantly reduced in each of the patient groups when compared to normal levels observed in healthy local controls: uncomplicated malaria -54%, severe malaria -23%, and sepsis -32%, (p = <0.001). Inspection of amino acid profiles revealed that in each group the majority of amino acids were below normal levels, except for phenylalanine. Among patients with severe malaria, L-lactate was strongly associated with an increase of the total amino acid concentration, likely because this reflects tissue hypoxia. Our data confirm previously described amino acid abnormalities, likely resulting from overall changes in the concentration of PFAA.


Fitness Loss under Amino Acid Starvation in Artemisinin-Resistant Plasmodium falciparum Isolates from Cambodia.

  • Duangkamon Bunditvorapoom‎ et al.
  • Scientific reports‎
  • 2018‎

Artemisinin is the most rapidly effective drug for Plasmodium falciparum malaria treatment currently in clinical use. Emerging artemisinin-resistant parasites pose a great global health risk. At present, the level of artemisinin resistance is still relatively low with evidence pointing towards a trade-off between artemisinin resistance and fitness loss. Here we show that artemisinin-resistant P. falciparum isolates from Cambodia manifested fitness loss, showing fewer progenies during the intra-erythrocytic developmental cycle. The loss in fitness was exacerbated under the condition of low exogenous amino acid supply. The resistant parasites failed to undergo maturation, whereas their drug-sensitive counterparts were able to complete the erythrocytic cycle under conditions of amino acid deprivation. The artemisinin-resistant phenotype was not stable, and loss of the phenotype was associated with changes in the expression of a putative target, Exp1, a membrane glutathione transferase. Analysis of SNPs in haemoglobin processing genes revealed associations with parasite clearance times, suggesting changes in haemoglobin catabolism may contribute to artemisinin resistance. These findings on fitness and protein homeostasis could provide clues on how to contain emerging artemisinin-resistant parasites.


Anthelmintic efficacy evaluation and mechanism of N-methylbenzo[d]oxazol-2-amine.

  • Pattaneeya Prangthip‎ et al.
  • Scientific reports‎
  • 2023‎

Parasitic roundworms cause significant sickness and mortality in animals and humans. In livestock, these nematodes have severe economic impact and result in losses in food production on a global scale. None of the currently available drugs ideally suit all treatment circumstances, and the development of drug-resistant nematode strains has become a challenge to control the infection. There is an urgent need to develop novel anthelmintic compounds. According to our previous report, N-methylbenzo[d]oxazol-2-amine (1) showed anthelmintic activity and lowest cytotoxicity. In this study, in vivo anthelmintic properties were evaluated using Trichinella spiralis infected mice. Toxicity was evaluated using the rats and mode of action using molecular docking and metabolomics approaches. The in vivo results demonstrate that a dose of 250 mg/kg reduced the T. spiralis abundance in the digestive tract by 49%. The 250 mg/kg Albendazole was served as control. The relatively low acute toxicity was categorized into chemical category 5, with an LD50 greater than 2000 mg/kg body. Molecular docking analysis showed the T. spiralis tubulin beta chain and glutamate-gated channels might not be the main targets of compound 1. Metabolomics analysis was used to explain the effects of compound 1 on the T. spiralis adult worm. The results demonstrated that compound 1 significantly up-regulated the metabolism of purine, pyrimidine and down-regulated sphingolipid metabolism. In conclusion, compound 1 could be a potential molecule for anthelmintic development. The bioavailability, pharmacokinetics, and absorption of this compound should be studied further to provide information for its future efficacy improvement.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: