Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 88 papers

Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution.

  • Irina Solovei‎ et al.
  • Cell‎
  • 2009‎

We show that the nuclear architecture of rod photoreceptor cells differs fundamentally in nocturnal and diurnal mammals. The rods of diurnal retinas possess the conventional architecture found in nearly all eukaryotic cells, with most heterochromatin situated at the nuclear periphery and euchromatin residing toward the nuclear interior. The rods of nocturnal retinas have a unique inverted pattern, where heterochromatin localizes in the nuclear center, whereas euchromatin, as well as nascent transcripts and splicing machinery, line the nuclear border. The inverted pattern forms by remodeling of the conventional one during terminal differentiation of rods. The inverted rod nuclei act as collecting lenses, and computer simulations indicate that columns of such nuclei channel light efficiently toward the light-sensing rod outer segments. Comparison of the two patterns suggests that the conventional architecture prevails in eukaryotic nuclei because it results in more flexible chromosome arrangements, facilitating positional regulation of nuclear functions.


Loss of photoreceptor potential from retinal progenitor cell cultures, despite improvements in survival.

  • Fiona C Mansergh‎ et al.
  • Experimental eye research‎
  • 2010‎

Retinal degeneration (RD) results from photoreceptor apoptosis. Cell transplantation, one potential therapeutic approach, requires expandable stem cells that can form mature photoreceptors when differentiated. Freshly dissociated primary retinal cells from postnatal day 2-6 (PN2-6) mouse retina can give rise, post-transplantation, to photoreceptors in adult recipients. Unfortunately, incorporation rates are low; moreover, photoreceptor potential is lost if the same PN2-6 cells are cultured prior to transplantation. We investigated the identity of the cells forming photoreceptors post-transplantation, using FACS sorted primary postnatal day (PN) 3-5 Rho-eGFP retinal cells. Higher integration rates were achieved for cells that were expressing Rho-eGFP at PN3-5, indicating that post-mitotic photoreceptor precursors already expressing rhodopsin form the majority of integrating rods. We then investigated improvement of cell culture protocols for retinal progenitor cells (RPCs) derived from PN3-5 retinal cells in vitro. We succeeded in improving RPC survival and growth rates 25-fold, by modifying retinal dissociation, replacing N2 supplement with B27 supplement minus retinoic acid (B27-RA) and coating flasks with fibronectin. However, levels of rhodopsin and similar photoreceptor-specific markers still diminished rapidly during growth in vitro, and did not re-appear after in vitro differentiation. Similarly, transplanted RPCs, whether proliferating or differentiated, did not form photoreceptors in vivo. Cultured RPCs upregulate genes such as Sox2 and nestin, markers of more primitive neural stem cells. Use of these cells for RD treatment will require identification of triggers that favour terminal photoreceptor differentiation and survival in vitro prior to transplantation.


Niche WNT5A regulates the actin cytoskeleton during regeneration of hematopoietic stem cells.

  • Christina Schreck‎ et al.
  • The Journal of experimental medicine‎
  • 2017‎

Here, we show that the Wnt5a-haploinsufficient niche regenerates dysfunctional HSCs, which do not successfully engraft in secondary recipients. RNA sequencing of the regenerated donor Lin- SCA-1+ KIT+ (LSK) cells shows dysregulated expression of ZEB1-associated genes involved in the small GTPase-dependent actin polymerization pathway. Misexpression of DOCK2, WAVE2, and activation of CDC42 results in apolar F-actin localization, leading to defects in adhesion, migration and homing of HSCs regenerated in a Wnt5a-haploinsufficient microenvironment. Moreover, these cells show increased differentiation in vitro, with rapid loss of HSC-enriched LSK cells. Our study further shows that the Wnt5a-haploinsufficient environment similarly affects BCR-ABLp185 leukemia-initiating cells, which fail to generate leukemia in 42% of the studied recipients, or to transfer leukemia to secondary hosts. Thus, we show that WNT5A in the bone marrow niche is required to regenerate HSCs and leukemic cells with functional ability to rearrange the actin cytoskeleton and engraft successfully.


In vitro expanded stem cells from the developing retina fail to generate photoreceptors but differentiate into myelinating oligodendrocytes.

  • Magdalena Czekaj‎ et al.
  • PloS one‎
  • 2012‎

Cell transplantation to treat retinal degenerative diseases represents an option for the replacement of lost photoreceptor cells. In vitro expandable cells isolated from the developing mammalian retina have been suggested as a potential source for the generation of high numbers of donor photoreceptors. In this study we used standardized culture conditions based on the presence of the mitogens FGF-2 and EGF to generate high numbers of cells in vitro from the developing mouse retina. These presumptive 'retinal stem cells' ('RSCs') can be propagated as monolayer cultures over multiple passages, express markers of undifferentiated neural cells, and generate neuronal and glial cell types upon withdrawal of mitogens in vitro or following transplantation into the adult mouse retina. The proportion of neuronal differentiation can be significantly increased by stepwise removal of mitogens and inhibition of the notch signaling pathway. However, 'RSCs', by contrast to their primary counterparts in vivo, i.e. retinal progenitor cells, loose the expression of retina-specific progenitor markers like Rax and Chx10 after passaging and fail to differentiate into photoreceptors both in vitro or after intraretinal transplantation. Notably, 'RSCs' can be induced to differentiate into myelinating oligodendrocytes, a cell type not generated by primary retinal progenitor cells. Based on these findings we conclude that 'RSCs' expanded in high concentrations of FGF-2 and EGF loose their retinal identity and acquire features of in vitro expandable neural stem-like cells making them an inappropriate cell source for strategies aimed at replacing photoreceptor cells in the degenerated retina.


Association of the EGF-TM7 receptor CD97 expression with FLT3-ITD in acute myeloid leukemia.

  • Manja Wobus‎ et al.
  • Oncotarget‎
  • 2015‎

Internal tandem duplications within the juxtamembrane region of the FMS-like tyrosine kinase receptor FLT3 (FLT3-ITD) represents one of the most common mutations in patients with acute myeloid leukemia (AML) which results in constitutive aberrant activation, increased proliferation of leukemic progenitors and is associated with an aggressive clinical phenotype. The expression of CD97, an EGF-TM7 receptor, has been linked to invasive behavior in thyroid and colorectal cancer. Here, we have investigated the association of CD97 with FLT3-ITD and its functional consequences in AML.Higher CD97 expression levels have been detected in 208 out of 385 primary AML samples. This was accompanied by a significantly increased bone marrow blast count as well as by mutations in the FLT3 gene. FLT3-ITD expressing cell lines as MV4-11 and MOLM-13 revealed significantly higher CD97 levels than FLT3 wildtype EOL-1, OCI-AML3 and HL-60 cells which were clearly decreased by the tyrosine kinase inhibitors PKC412 and SU5614. CD97 knock down by short hairpin RNA in MV4-11 cells resulted in inhibited trans-well migration towards fetal calf serum (FCS) and lysophosphatidic acid (LPA) being at least in part Rho-A dependent. Moreover, knock down of CD97 led to an altered mechanical phenotype, reduced adhesion to a stromal layer and lower wildtype FLT3 expression.Our results, thus, constitute the first evidence for the functional relevance of CD97 expression in FLT3-ITD AML cells rendering it a potential new theragnostic target.


In Vivo Analysis of Disease-Associated Point Mutations Unveils Profound Differences in mRNA Splicing of Peripherin-2 in Rod and Cone Photoreceptors.

  • Elvir Becirovic‎ et al.
  • PLoS genetics‎
  • 2016‎

Point mutations in peripherin-2 (PRPH2) are associated with severe retinal degenerative disorders affecting rod and/or cone photoreceptors. Various disease-causing mutations have been identified, but the exact contribution of a given mutation to the clinical phenotype remains unclear. Exonic point mutations are usually assumed to alter single amino acids, thereby influencing specific protein characteristics; however, they can also affect mRNA splicing. To examine the effects of distinct PRPH2 point mutations on mRNA splicing and protein expression in vivo, we designed PRPH2 minigenes containing the three coding exons and relevant intronic regions of human PRPH2. Minigenes carrying wild type PRPH2 or PRPH2 exon 2 mutations associated with rod or cone disorders were expressed in murine photoreceptors using recombinant adeno-associated virus (rAAV) vectors. We detect three PRPH2 splice isoforms in rods and cones: correctly spliced, intron 1 retention, and unspliced. In addition, we show that only the correctly spliced isoform results in detectable protein expression. Surprisingly, compared to rods, differential splicing leads to lower expression of correctly spliced and higher expression of unspliced PRPH2 in cones. These results were confirmed in qRT-PCR experiments from FAC-sorted murine rods and cones. Strikingly, three out of five cone disease-causing PRPH2 mutations profoundly enhanced correct splicing of PRPH2, which correlated with strong upregulation of mutant PRPH2 protein expression in cones. By contrast, four out of six PRPH2 mutants associated with rod disorders gave rise to a reduced PRPH2 protein expression via different mechanisms. These mechanisms include aberrant mRNA splicing, protein mislocalization, and protein degradation. Our data suggest that upregulation of PRPH2 levels in combination with defects in the PRPH2 function caused by the mutation might be an important mechanism leading to cone degeneration. By contrast, the pathology of rod-specific PRPH2 mutations is rather characterized by PRPH2 downregulation and impaired protein localization.


Changes in Ect2 localization couple actomyosin-dependent cell shape changes to mitotic progression.

  • Helen K Matthews‎ et al.
  • Developmental cell‎
  • 2012‎

As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first becomes active in prophase, when it is exported from the nucleus into the cytoplasm, activating RhoA to induce the formation of a mechanically stiff and rounded metaphase cortex. Then, at anaphase, binding to RacGAP1 at the spindle midzone repositions Ect2 to induce local actomyosin ring formation. Ect2 localization therefore defines the stage-specific changes in actin cortex organization critical for accurate cell division.


Outer segment formation of transplanted photoreceptor precursor cells.

  • Dominic Eberle‎ et al.
  • PloS one‎
  • 2012‎

Transplantation of photoreceptor precursor cells (PPCs) into the retina represents a promising treatment for cell replacement in blinding diseases characterized by photoreceptor loss. In preclinical studies, we and others demonstrated that grafted PPCs integrate into the host outer nuclear layer (ONL) and develop into mature photoreceptors. However, a key feature of light detecting photoreceptors, the outer segment (OS) with natively aligned disc membrane staples, has not been studied in detail following transplantation. Therefore, we used as donor cells PPCs isolated from neonatal double transgenic reporter mice in which OSs are selectively labeled by green fluorescent protein while cell bodies are highlighted by red fluorescent protein. PPCs were enriched using CD73-based magnetic associated cell sorting and subsequently transplanted into either adult wild-type or a model of autosomal-dominant retinal degeneration mice. Three weeks post-transplantation, donor photoreceptors were identified based on fluorescent-reporter expression and OS formation was monitored at light and electron microscopy levels. Donor cells that properly integrated into the host wild-type retina developed OSs with the formation of a connecting cilium and well-aligned disc membrane staples similar to the surrounding native cells of the host. Surprisingly, the majority of not-integrated PPCs that remained in the sub-retinal space also generated native-like OSs in wild-type mice and those affected by retinal degeneration. Moreover, they showed an improved photoreceptor maturation and OS formation by comparison to donor cells located on the vitreous side suggesting that environmental cues influence the PPC differentiation and maturation. We conclude that transplanted PPCs, whether integrated or not into the host ONL, are able to generate the cellular structure for effective light detection, a phenomenon observed in wild-type as well as in degenerated retinas. Given that patients suffering from retinitis pigmentosa lose almost all photoreceptors, our findings are of utmost importance for the development of cell-based therapies.


RNA interference-mediated suppression and replacement of human rhodopsin in vivo.

  • Mary O'Reilly‎ et al.
  • American journal of human genetics‎
  • 2007‎

Mutational heterogeneity represents a significant barrier to development of therapies for many dominantly inherited diseases. For example, >100 mutations in the rhodopsin gene (RHO) have been identified in patients with retinitis pigmentosa (RP). The development of therapies for dominant disorders that correct the primary genetic lesion and overcome mutational heterogeneity is challenging. Hence, therapeutics comprising two elements--gene suppression in conjunction with gene replacement--have been investigated. Suppression is targeted to a site independent of the mutation; therefore, both mutant and wild-type alleles are suppressed. In parallel with suppression, a codon-modified replacement gene refractory to suppression is provided. Both in vitro and in vivo validation of suppression and replacement for RHO-linked RP has been undertaken in the current study. RNA interference (RNAi) has been used to achieve ~90% in vivo suppression of RHO in photoreceptors, with use of adeno-associated virus (AAV) for delivery. Demonstration that codon-modifed RHO genes express functional wild-type protein has been explored transgenically, together with in vivo expression of AAV-delivered RHO-replacement genes in the presence of targeting RNAi molecules. Observation of potential therapeutic benefit from AAV-delivered suppression and replacement therapies has been obtained in Pro23His mice. Results provide the first in vivo indication that suppression and replacement can provide a therapeutic solution for dominantly inherited disorders such as RHO-linked RP and can be employed to circumvent mutational heterogeneity.


CRX Expression in Pluripotent Stem Cell-Derived Photoreceptors Marks a Transplantable Subpopulation of Early Cones.

  • Joseph Collin‎ et al.
  • Stem cells (Dayton, Ohio)‎
  • 2019‎

Death of photoreceptors is a common cause of age-related and inherited retinal dystrophies, and thus their replenishment from renewable stem cell sources is a highly desirable therapeutic goal. Human pluripotent stem cells provide a useful cell source in view of their limitless self-renewal capacity and potential to not only differentiate into cells of the retina but also self-organize into tissue with structure akin to the human retina as part of three-dimensional retinal organoids. Photoreceptor precursors have been isolated from differentiating human pluripotent stem cells through application of cell surface markers or fluorescent reporter approaches and shown to have a similar transcriptome to fetal photoreceptors. In this study, we investigated the transcriptional profile of CRX-expressing photoreceptor precursors derived from human pluripotent stem cells and their engraftment capacity in an animal model of retinitis pigmentosa (Pde6brd1), which is characterized by rapid photoreceptor degeneration. Single cell RNA-Seq analysis revealed the presence of a dominant cell cluster comprising 72% of the cells, which displayed the hallmarks of early cone photoreceptor expression. When transplanted subretinally into the Pde6brd1 mice, the CRX+ cells settled next to the inner nuclear layer and made connections with the inner neurons of the host retina, and approximately one-third of them expressed the pan cone marker, Arrestin 3, indicating further maturation upon integration into the host retina. Together, our data provide valuable molecular insights into the transcriptional profile of human pluripotent stem cells-derived CRX+ photoreceptor precursors and indicate their usefulness as a source of transplantable cone photoreceptors. Stem Cells 2019;37:609-622.


Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood.

  • Nicole Toepfner‎ et al.
  • eLife‎
  • 2018‎

Blood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial blood diagnostics is an unbiased and quick functional assessment of blood that can narrow down the diagnosis and generate specific hypotheses. To address this need, we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of diluted whole blood, without labeling, enrichment or separation, at rates of 1000 cells/sec. In a drop of blood we can identify all major blood cells and characterize their pathological changes in several disease conditions in vitro and in patient samples. This approach takes previous results of mechanical studies on specifically isolated blood cells to the level of application directly in blood and adds a functional dimension to conventional blood analysis.


nanite: using machine learning to assess the quality of atomic force microscopy-enabled nano-indentation data.

  • Paul Müller‎ et al.
  • BMC bioinformatics‎
  • 2019‎

Atomic force microscopy (AFM) allows the mechanical characterization of single cells and live tissue by quantifying force-distance (FD) data in nano-indentation experiments. One of the main problems when dealing with biological tissue is the fact that the measured FD curves can be disturbed. These disturbances are caused, for instance, by passive cell movement, adhesive forces between the AFM probe and the cell, or insufficient attachment of the tissue to the supporting cover slide. In practice, the resulting artifacts are easily spotted by an experimenter who then manually sorts out curves before proceeding with data evaluation. However, this manual sorting step becomes increasingly cumbersome for studies that involve numerous measurements or for quantitative imaging based on FD maps.


A Human Retinal Pigment Epithelium-Based Screening Platform Reveals Inducers of Photoreceptor Outer Segments Phagocytosis.

  • Sven Schreiter‎ et al.
  • Stem cell reports‎
  • 2020‎

Phagocytosis is a key function in various cells throughout the body. A deficiency in photoreceptor outer segment (POS) phagocytosis by the retinal pigment epithelium (RPE) causes vision loss in inherited retinal diseases and possibly age-related macular degeneration. To date, there are no effective therapies available aiming at recovering the lost phagocytosis function. Here, we developed a high-throughput screening assay based on RPE derived from human embryonic stem cells (hRPE) to reveal enhancers of POS phagocytosis. One of the hits, ramoplanin (RM), reproducibly enhanced POS phagocytosis and ensheathment in hRPE, and enhanced the expression of proteins known to regulate membrane dynamics and ensheathment in other cell systems. Additionally, RM rescued POS internalization defect in Mer receptor tyrosine kinase (MERTK) mutant hRPE, derived from retinitis pigmentosa patient induced pluripotent stem cells. Our platform, including a primary phenotypic screening phagocytosis assay together with orthogonal assays, establishes a basis for RPE-based therapy discovery aiming at a broad patient spectrum.


Mechanical Adaptability of Tumor Cells in Metastasis.

  • Valentin Gensbittel‎ et al.
  • Developmental cell‎
  • 2021‎

The most dangerous aspect of cancer lies in metastatic progression. Tumor cells will successfully form life-threatening metastases when they undergo sequential steps along a journey from the primary tumor to distant organs. From a biomechanics standpoint, growth, invasion, intravasation, circulation, arrest/adhesion, and extravasation of tumor cells demand particular cell-mechanical properties in order to survive and complete the metastatic cascade. With metastatic cells usually being softer than their non-malignant counterparts, high deformability for both the cell and its nucleus is thought to offer a significant advantage for metastatic potential. However, it is still unclear whether there is a finely tuned but fixed mechanical state that accommodates all mechanical features required for survival throughout the cascade or whether tumor cells need to dynamically refine their properties and intracellular components at each new step encountered. Here, we review the various mechanical requirements successful cancer cells might need to fulfill along their journey and speculate on the possibility that they dynamically adapt their properties accordingly. The mechanical signature of a successful cancer cell might actually be its ability to adapt to the successive microenvironmental constraints along the different steps of the journey.


The Relative Densities of Cytoplasm and Nuclear Compartments Are Robust against Strong Perturbation.

  • Kyoohyun Kim‎ et al.
  • Biophysical journal‎
  • 2020‎

The cell nucleus is a compartment in which essential processes such as gene transcription and DNA replication occur. Although the large amount of chromatin confined in the finite nuclear space could install the picture of a particularly dense organelle surrounded by less dense cytoplasm, recent studies have begun to report the opposite. However, the generality of this newly emerging, opposite picture has so far not been tested. Here, we used combined optical diffraction tomography and epi-fluorescence microscopy to systematically quantify the mass densities of cytoplasm, nucleoplasm, and nucleoli of human cell lines, challenged by various perturbations. We found that the nucleoplasm maintains a lower mass density than cytoplasm during cell cycle progression by scaling its volume to match the increase of dry mass during cell growth. At the same time, nucleoli exhibited a significantly higher mass density than the cytoplasm. Moreover, actin and microtubule depolymerization and changing chromatin condensation altered volume, shape, and dry mass of those compartments, whereas the relative distribution of mass densities was generally unchanged. Our findings suggest that the relative mass densities across membrane-bound and membraneless compartments are robustly conserved, likely by different as-of-yet unknown mechanisms, which hints at an underlying functional relevance. This surprising robustness of mass densities contributes to an increasing recognition of the importance of physico-chemical properties in determining cellular characteristics and compartments.


Mechanical changes of peripheral nerve tissue microenvironment and their structural basis during development.

  • Gonzalo Rosso‎ et al.
  • APL bioengineering‎
  • 2019‎

Peripheral nerves are constantly exposed to mechanical stresses associated with body growth and limb movements. Although some aspects of these nerves' biomechanical properties are known, the link between nerve biomechanics and tissue microstructures during development is poorly understood. Here, we used atomic force microscopy to comprehensively investigate the elastic modulus of living peripheral nerve tissue cross sections ex vivo at distinct stages of development and correlated these elastic moduli with various cellular and extracellular aspects of the underlying histological microstructure. We found that local nerve tissue stiffness is spatially heterogeneous and evolves biphasically during maturation. Furthermore, we found the intracellular microtubule network and the extracellular matrix collagens type I and type IV as major contributors to the nerves' biomechanical properties, but surprisingly not cellular density and myelin content as previously shown for the central nervous system. Overall, these findings characterize the mechanical microenvironment that surrounds Schwann cells and neurons and will further our understanding of their mechanosensing mechanisms during nerve development. These data also provide the design of artificial nerve scaffolds to promote biomedical nerve regeneration therapies by considering mechanical properties that better reflect the nerve microenvironment.


Crocetin Prevents RPE Cells from Oxidative Stress through Protection of Cellular Metabolic Function and Activation of ERK1/2.

  • Padideh Karimi‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Age-related macular degeneration (AMD) is a leading cause for visual impairment in aging populations with limited established therapeutic interventions available. Oxidative stress plays an essential role in the pathogenesis of AMD, damaging the retinal pigment epithelium (RPE), which is essential for the function and maintenance of the light-sensing photoreceptors. This study aimed to evaluate the effects of crocetin, one of the main components of Saffron, on an in vitro RPE model of tert-butyl hydroperoxide (TBHP) induced oxidative stress using ARPE19 cells. The effects of crocetin were assessed using lactate de-hydrogenase (LDH) and ATP assays, as well as immunocytochemistry for cell morphology, junctional integrity, and nuclear morphology. The mechanism of crocetin action was determined via assessment of energy production pathways, including mitochondrial respiration and glycolysis in real-time as well as investigation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and distribution. Our results show that crocetin pre-treatment protects ARPE19 cells from TBHP-induced LDH release, intracellular ATP depletion, nuclear condensation, and disturbance of junctional integrity and cytoskeleton. The protective effect of crocetin is mediated via the preservation of energy production pathways and activation of ERK1/2 in the first minutes of TBHP exposure to potentiate survival pathways. The combined data suggest that a natural antioxidant, such as crocetin, represents a promising candidate to prevent oxidative stress in RPE cells and might halt or delay disease progression in AMD.


Photobiomodulation Mediates Neuroprotection against Blue Light Induced Retinal Photoreceptor Degeneration.

  • Nora Heinig‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Potent neuroprotective effects of photobiomodulation with 670 nm red light (RL) have been demonstrated in several models of retinal disease. RL improves mitochondrial metabolism, reduces retinal inflammation and oxidative cell stress, showing its ability to enhance visual function. However, the current knowledge is limited to the main hypothesis that the respiratory chain complex IV, cytochrome c oxidase, serves as the primary target of RL. Here, we demonstrate a comprehensive cellular, molecular, and functional characterization of neuroprotective effects of 670 nm RL and 810 nm near-infrared light (NIRL) on blue light damaged murine primary photoreceptors. We show that respiratory chain complexes I and II are additional PBM targets, besides complex IV, leading to enhanced mitochondrial energy metabolism. Accordingly, our study identified mitochondria related RL- and NIRL-triggered defense mechanisms promoting photoreceptor neuroprotection. The observed improvement of mitochondrial and extramitochondrial respiration in both inner and outer segments is linked with reduced oxidative stress including its cellular consequences and reduced mitochondria-induced apoptosis. Analysis of regulatory mechanisms using gene expression analysis identified upregulation α-crystallins that indicate enhanced production of proteins with protective functions that point to the rescued mitochondrial function. The results support the hypothesis that energy metabolism is a major target for retinal light therapy.


Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging.

  • Raimund Schlüßler‎ et al.
  • Biophysical journal‎
  • 2018‎

The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we show for the first time to our knowledge a systematic application of confocal Brillouin microscopy to quantitatively map the mechanical properties of spinal cord tissues during biologically relevant processes in a contact-free and nondestructive manner. Living zebrafish larvae were mechanically imaged in all anatomical planes during development and after spinal cord injury. These experiments revealed that Brillouin microscopy is capable of detecting the mechanical properties of distinct anatomical structures without interfering with the animal's natural development. The Brillouin shift within the spinal cord remained comparable during development and transiently decreased during the repair processes after spinal cord transection. By taking into account the refractive index distribution, we explicitly determined the apparent longitudinal modulus and viscosity of different larval zebrafish tissues. Importantly, mechanical properties differed between tissues in situ and in excised slices. The presented work constitutes the first step toward an in vivo assessment of spinal cord tissue mechanics during regeneration, provides a methodical basis to identify key determinants of mechanical tissue properties, and allows us to test their relative importance in combination with biochemical and genetic factors during developmental and regenerative processes.


Osteoblastic glucocorticoid signaling exacerbates high-fat-diet- induced bone loss and obesity.

  • Sarah Kim‎ et al.
  • Bone research‎
  • 2021‎

Chronic high-fat diet (HFD) consumption not only promotes obesity and insulin resistance, but also causes bone loss through mechanisms that are not well understood. Here, we fed wild-type CD-1 mice either chow or a HFD (43% of energy from fat) for 18 weeks; HFD-fed mice exhibited decreased trabecular volume (-28%) and cortical thickness (-14%) compared to chow-fed mice. In HFD-fed mice, bone loss was due to reduced bone formation and mineral apposition, without obvious effects on bone resorption. HFD feeding also increased skeletal expression of sclerostin and caused deterioration of the osteocyte lacunocanalicular network (LCN). In mice fed HFD, skeletal glucocorticoid signaling was activated relative to chow-fed mice, independent of serum corticosterone concentrations. We therefore examined whether skeletal glucocorticoid signaling was necessary for HFD-induced bone loss, using transgenic mice lacking glucocorticoid signaling in osteoblasts and osteocytes (HSD2OB/OCY-tg mice). In HSD2OB/OCY-tg mice, bone formation and mineral apposition rates were not suppressed by HFD, and bone loss was significantly attenuated. Interestingly, in HSD2OB/OCY-tg mice fed HFD, both Wnt signaling (less sclerostin induction, increased β-catenin expression) and glucose uptake were significantly increased, relative to diet- and genotype-matched controls. The osteocyte LCN remained intact in HFD-fed HSD2OB/OCY-tg mice. When fed a HFD, HSD2OB/OCY-tg mice also increased their energy expenditure and were protected against obesity, insulin resistance, and dyslipidemia. Therefore, glucocorticoid signaling in osteoblasts and osteocytes contributes to the suppression of bone formation in HFD-fed mice. Skeletal glucocorticoid signaling is also an important determinant of glucose uptake in bone, which influences the whole-body metabolic response to HFD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: