Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Pluripotency genes overexpressed in primate embryonic stem cells are localized on homologues of human chromosomes 16, 17, 19, and X.

  • Ahmi Ben-Yehudah‎ et al.
  • Stem cell research‎
  • 2010‎

While human embryonic stem cells (hESCs) are predisposed toward chromosomal aneploidities on 12, 17, 20, and X, rendering them susceptible to transformation, the specific genes expressed are not yet known. Here, by identifying the genes overexpressed in pluripotent rhesus ESCs (nhpESCs) and comparing them both to their genetically identical differentiated progeny (teratoma fibroblasts) and to genetically related differentiated parental cells (parental skin fibroblasts from whom gametes were used for ESC derivation), we find that some of those overexpressed genes in nhpESCs cluster preferentially on rhesus chromosomes 16, 19, 20, and X, homologues of human chromosomes 17, 19, 16, and X, respectively. Differentiated parental skin fibroblasts display gene expression profiles closer to nhpESC profiles than to teratoma cells, which are genetically identical to the pluripotent nhpESCs. Twenty over- and underexpressed pluripotency modulators, some implicated in neurogenesis, have been identified. The overexpression of some of these genes discovered using pedigreed nhpESCs derived from prime embryos generated by fertile primates, which is impossible to perform with the anonymously donated clinically discarded embryos from which hESCs are derived, independently confirms the importance of chromosome 17 and X regions in pluripotency and suggests specific candidates for targeting differentiation and transformation decisions.


In vivo topical gene therapy for recessive dystrophic epidermolysis bullosa: a phase 1 and 2 trial.

  • Irina Gurevich‎ et al.
  • Nature medicine‎
  • 2022‎

Recessive dystrophic epidermolysis bullosa (RDEB) is a lifelong genodermatosis associated with blistering, wounding, and scarring caused by mutations in COL7A1, the gene encoding the anchoring fibril component, collagen VII (C7). Here, we evaluated beremagene geperpavec (B-VEC), an engineered, non-replicating COL7A1 containing herpes simplex virus type 1 (HSV-1) vector, to treat RDEB skin. B-VEC restored C7 expression in RDEB keratinocytes, fibroblasts, RDEB mice and human RDEB xenografts. Subsequently, a randomized, placebo-controlled, phase 1 and 2 clinical trial (NCT03536143) evaluated matched wounds from nine RDEB patients receiving topical B-VEC or placebo repeatedly over 12 weeks. No grade 2 or above B-VEC-related adverse events or vector shedding or tissue-bound skin immunoreactants were noted. HSV-1 and C7 antibodies sometimes presented at baseline or increased after B-VEC treatment without an apparent impact on safety or efficacy. Primary and secondary objectives of C7 expression, anchoring fibril assembly, wound surface area reduction, duration of wound closure, and time to wound closure following B-VEC treatment were met. A patient-reported pain-severity secondary outcome was not assessed given the small proportion of wounds treated. A global assessment secondary endpoint was not pursued due to redundancy with regard to other endpoints. These studies show that B-VEC is an easily administered, safely tolerated, topical molecular corrective therapy promoting wound healing in patients with RDEB.


Protocol to image and quantify nuclear pore complexes using high-resolution laser scanning confocal microscopy.

  • Jocelyn D Mich-Basso‎ et al.
  • STAR protocols‎
  • 2023‎

Nuclear pore complexes are pathways for nuclear-cytoplasmic communication that participate in chromatin organization. Here, we present a protocol to image and quantify the number of nuclear pore complexes in cells. We describe steps for cell plating and culture, immunofluorescence detection, and confocal microscopy visualization of nuclear pore complexes. We then detail quantification and 3D data analysis. This protocol utilizes digital thresholding under human supervision for quantification of nuclear pore complexes. For complete details on the use and execution of this protocol, please refer to Han et al.1.


Semiquantitative histopathology and 3D magnetic resonance microscopy as collaborative platforms for tissue identification and comparison within teratomas derived from pedigreed primate embryonic stem cells.

  • Carlos A Castro‎ et al.
  • Stem cell research‎
  • 2010‎

Teratoma formation in xenografts is a sufficiently stringent pluripotency assay for stem cells. However, little is known about the composition and spatial relationships of tissues within teratomas that may provide clues about development and platforms for studying organ development. Additionally, teratoma formation and analysis lack standards for reporting as assays of pluripotency. Three of 27 total teratomas derived from pedigreed primate embryonic stem cells underwent quantitative three-dimensional high-resolution magnetic resonance microscopy (MRM). Teratomas were subsequently serially sectioned and tissue types identified, semiquantitated, and correlated with MRM images. All teratomas demonstrated tissue derivatives from the three germ layers and approximately 23 different tissue types were identified. Certain tissue groups attempted to form organs more frequently (e.g., trachea/bronchi, small intestine). MRM discriminated some tissues readily (e.g., bone, adipose, cartilage) while other tissue types with like MR intensities could not be distinguished. Semiquantitative histopathological analysis of teratomas demonstrates the ability to delineate multiple tissues as derived from ectoderm, mesoderm, or endoderm and to use this information for comparison to other teratomas. MRM provides rapid quantitative imaging of intact teratomas that complements histology and identifies sites of interest for additional biological studies.


Muscleblind acts as a modifier of FUS toxicity by modulating stress granule dynamics and SMN localization.

  • Ian Casci‎ et al.
  • Nature communications‎
  • 2019‎

Mutations in fused in sarcoma (FUS) lead to amyotrophic lateral sclerosis (ALS) with varying ages of onset, progression and severity. This suggests that unknown genetic factors contribute to disease pathogenesis. Here we show the identification of muscleblind as a novel modifier of FUS-mediated neurodegeneration in vivo. Muscleblind regulates cytoplasmic mislocalization of mutant FUS and subsequent accumulation in stress granules, dendritic morphology and toxicity in mammalian neuronal and human iPSC-derived neurons. Interestingly, genetic modulation of endogenous muscleblind was sufficient to restore survival motor neuron (SMN) protein localization in neurons expressing pathogenic mutations in FUS, suggesting a potential mode of suppression of FUS toxicity. Upregulation of SMN suppressed FUS toxicity in Drosophila and primary cortical neurons, indicating a link between FUS and SMN. Our data provide in vivo evidence that muscleblind is a dominant modifier of FUS-mediated neurodegeneration by regulating FUS-mediated ALS pathogenesis.


Lamin B2 Levels Regulate Polyploidization of Cardiomyocyte Nuclei and Myocardial Regeneration.

  • Lu Han‎ et al.
  • Developmental cell‎
  • 2020‎

Heart regeneration requires cardiomyocyte proliferation. It is thought that formation of polyploid nuclei establishes a barrier for cardiomyocyte proliferation, but the mechanisms are largely unknown. Here, we show that the nuclear lamina filament Lamin B2 (Lmnb2), whose expression decreases in mice after birth, is essential for nuclear envelope breakdown prior to progression to metaphase and subsequent division. Inactivating Lmnb2 decreased metaphase progression, which led to formation of polyploid cardiomyocyte nuclei in neonatal mice, which, in turn, decreased myocardial regeneration. Increasing Lmnb2 expression promoted cardiomyocyte M-phase progression and cytokinesis and improved indicators of myocardial regeneration in neonatal mice. Inactivating LMNB2 in human iPS cell-derived cardiomyocytes reduced karyokinesis and increased formation of polyploid nuclei. In primary cardiomyocytes from human infants with heart disease, modifying LMNB2 expression correspondingly altered metaphase progression and ploidy of daughter nuclei. In conclusion, Lmnb2 expression is essential for karyokinesis in mammalian cardiomyocytes and heart regeneration.


Changes in nuclear pore numbers control nuclear import and stress response of mouse hearts.

  • Lu Han‎ et al.
  • Developmental cell‎
  • 2022‎

Nuclear pores are essential for nuclear-cytoplasmic transport. Whether and how cells change nuclear pores to alter nuclear transport and cellular function is unknown. Here, we show that rat heart muscle cells (cardiomyocytes) undergo a 63% decrease in nuclear pore numbers during maturation, and this changes their responses to extracellular signals. The maturation-associated decline in nuclear pore numbers is associated with lower nuclear import of signaling proteins such as mitogen-activated protein kinase (MAPK). Experimental reduction of nuclear pore numbers decreased nuclear import of signaling proteins, resulting in decreased expression of immediate-early genes. In a mouse model of high blood pressure, reduction of nuclear pore numbers improved adverse heart remodeling and reduced progression to lethal heart failure. The decrease in nuclear pore numbers in cardiomyocyte maturation and resulting functional changes demonstrate how terminally differentiated cells permanently alter their handling of information flux across the nuclear envelope and, with that, their behavior.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: