Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 65 papers

Metabolic reprogramming in mutant IDH1 glioma cells.

  • Jose L Izquierdo-Garcia‎ et al.
  • PloS one‎
  • 2015‎

Mutations in isocitrate dehydrogenase (IDH) 1 have been reported in over 70% of low-grade gliomas and secondary glioblastomas. IDH1 is the enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate while mutant IDH1 catalyzes the conversion of α-ketoglutarate into 2-hydroxyglutarate. These mutations are associated with the accumulation of 2-hydroxyglutarate within the tumor and are believed to be one of the earliest events in the development of low-grade gliomas. The goal of this work was to determine whether the IDH1 mutation leads to additional magnetic resonance spectroscopy (MRS)-detectable changes in the cellular metabolome.


Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas.

  • Sebastian Bender‎ et al.
  • Cancer cell‎
  • 2013‎

Two recurrent mutations, K27M and G34R/V, within histone variant H3.3 were recently identified in ∼50% of pHGGs. Both mutations define clinically and biologically distinct subgroups of pHGGs. Here, we provide further insight about the dominant-negative effect of K27M mutant H3.3, leading to a global reduction of the repressive histone mark H3K27me3. We demonstrate that this is caused by aberrant recruitment of the PRC2 complex to K27M mutant H3.3 and enzymatic inhibition of the H3K27me3-establishing methyltransferase EZH2. By performing chromatin immunoprecipitation followed by next-generation sequencing and whole-genome bisulfite sequencing in primary pHGGs, we show that reduced H3K27me3 levels and DNA hypomethylation act in concert to activate gene expression in K27M mutant pHGGs.


Novel therapeutic targets in the brain tumor microenvironment.

  • Joanna J Phillips‎
  • Oncotarget‎
  • 2012‎

Glioblastoma (GBM), a highly malignant brain tumor of adults and children, diffusely invades within the non-neoplastic brain. Despite aggressive current therapeutic interventions, improved therapeutic strategies are greatly needed. Interactions between the tumor and constituents of its microenvironment are known to regulate malignancy, and heparan sulfate proteoglycans (HSPGs) are important as they bind diverse extracellular proteins, including growth factors and cell adhesion molecules, regulating the activity of several ligand-mediated signaling pathways. Recent work from our group described a mechanism by which GBM regulates PDGFR-alpha signaling via enzymatic alteration of heparan sulfate proteoglycans (HSPGs) in the extracellular microenvironment. Blocking tumor-induced alterations of HSPGs, which can be achieved by pharmacological strategies, would potentially inhibit multiple oncogenic signaling pathways in tumor cells and disrupt critical tumormicroenvironment interactions. Here we examine HSPGs and the enzymes that modify them in GBM. We compare their expression across tumor subtypes, their potential roles in oncogenesis, and their potential as novel therapeutic targets in GBM.


A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment.

  • Amelie Griveau‎ et al.
  • Cancer cell‎
  • 2018‎

Gliomas comprise heterogeneous malignant glial and stromal cells. While blood vessel co-option is a potential mechanism to escape anti-angiogenic therapy, the relevance of glial phenotype in this process is unclear. We show that Olig2+ oligodendrocyte precursor-like glioma cells invade by single-cell vessel co-option and preserve the blood-brain barrier (BBB). Conversely, Olig2-negative glioma cells form dense perivascular collections and promote angiogenesis and BBB breakdown, leading to innate immune cell activation. Experimentally, Olig2 promotes Wnt7b expression, a finding that correlates in human glioma profiling. Targeted Wnt7a/7b deletion or pharmacologic Wnt inhibition blocks Olig2+ glioma single-cell vessel co-option and enhances responses to temozolomide. Finally, Olig2 and Wnt7 become upregulated after anti-VEGF treatment in preclinical models and patients. Thus, glial-encoded pathways regulate distinct glioma-vascular microenvironmental interactions.


Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model.

  • Stefan Grossauer‎ et al.
  • Oncotarget‎
  • 2016‎

Inhibitors of BRAFV600E kinase are currently under investigations in preclinical and clinical studies involving BRAFV600E glioma. Studies demonstrated clinical response to such individualized therapy in the majority of patients whereas in some patients tumors continue to grow despite treatment. To study resistance mechanisms, which include feedback activation of mitogen-activated protein kinase (MAPK) signaling in melanoma, we developed a luciferase-modified cell line (2341luc) from a BrafV600E mutant and Cdkn2a- deficient murine high-grade glioma, and analyzed its molecular responses to BRAFV600E- and MAPK kinase (MEK)-targeted inhibition. Immunocompetent, syngeneic FVB/N mice with intracranial grafts of 2341luc were tested for effects of BRAFV600E and MEK inhibitor treatments, with bioluminescence imaging up to 14-days after start of treatment and survival analysis as primary indicators of inhibitor activity. Intracranial injected tumor cells consistently generated high-grade glioma-like tumors in syngeneic mice. Intraperitoneal daily delivery of BRAFV600E inhibitor dabrafenib only transiently suppressed MAPK signaling, and rather increased Akt signaling and failed to extend survival for mice with intracranial 2341luc tumor. MEK inhibitor trametinib delivered by oral gavage daily suppressed MAPK pathway more effectively and had a more durable anti-growth effect than dabrafenib as well as a significant survival benefit. Compared with either agent alone, combined BRAFV600E and MEK inhibitor treatment was more effective in reducing tumor growth and extending animal subject survival, as corresponding to sustained MAPK pathway inhibition. Results derived from the 2341luc engraftment model application have clinical implications for the management of BRAFV600E glioma.


Heparan Sulfate Synthesized by Ext1 Regulates Receptor Tyrosine Kinase Signaling and Promotes Resistance to EGFR Inhibitors in GBM.

  • Yuki Ohkawa‎ et al.
  • Molecular cancer research : MCR‎
  • 2021‎

Signaling from multiple receptor tyrosine kinases (RTK) contributes to therapeutic resistance in glioblastoma (GBM). Heparan sulfate (HS), present on cell surfaces and in the extracellular matrix, regulates cell signaling via several mechanisms. To investigate the role for HS in promoting RTK signaling in GBM, we generated neural progenitor cells deficient for HS by knockout of the essential HS-biosynthetic enzyme Ext1, and studied tumor initiation and progression. HS-null cells had decreased proliferation, invasion, and reduced activation of multiple RTKs compared with control. In vivo tumor establishment was significantly decreased, and rate of tumor growth reduced with HS-deficient cells implanted in an HS-poor microenvironment. To investigate if HS regulates RTK activation through platelet-derived growth factor receptor α (PDGFRα) signaling, we removed cell surface HS in patient-derived GBM lines and identified reduced cell surface PDGF-BB ligand. Reduced ligand levels were associated with decreased phosphorylation of PDGFRα, suggesting HS promotes ligand-receptor interaction. Using human GBM tumorspheres and a murine GBM model, we show that ligand-mediated signaling can partially rescue cells from targeted RTK inhibition and that this effect is regulated by HS. Indeed, tumor cells deficient for HS had increased sensitivity to EGFR inhibition in vitro and in vivo. IMPLICATIONS: Our study shows that HS expressed on tumor cells and in the tumor microenvironment regulates ligand-mediated signaling, promoting tumor cell proliferation and invasion, and these factors contribute to decreased tumor cell response to targeted RTK inhibition.


Clinical, radiologic, and genetic characteristics of histone H3 K27M-mutant diffuse midline gliomas in adults.

  • Jessica D Schulte‎ et al.
  • Neuro-oncology advances‎
  • 2020‎

"Diffuse midline glioma (DMG), H3 K27M-mutant" is a new tumor entity established in the 2016 WHO classification of Tumors of the Central Nervous System that comprises a set of diffuse gliomas arising in midline structures and is molecularly defined by a K27M mutation in genes encoding the histone 3 variants H3.3 or H3.1. While this tumor entity is associated with poor prognosis in children, clinical experience in adults remains limited.


Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis.

  • Miller Huang‎ et al.
  • Cell stem cell‎
  • 2019‎

Human neural stem cell cultures provide progenitor cells that are potential cells of origin for brain cancers. However, the extent to which genetic predisposition to tumor formation can be faithfully captured in stem cell lines is uncertain. Here, we evaluated neuroepithelial stem (NES) cells, representative of cerebellar progenitors. We transduced NES cells with MYCN, observing medulloblastoma upon orthotopic implantation in mice. Significantly, transcriptomes and patterns of DNA methylation from xenograft tumors were globally more representative of human medulloblastoma compared to a MYCN-driven genetically engineered mouse model. Orthotopic transplantation of NES cells generated from Gorlin syndrome patients, who are predisposed to medulloblastoma due to germline-mutated PTCH1, also generated medulloblastoma. We engineered candidate cooperating mutations in Gorlin NES cells, with mutation of DDX3X or loss of GSE1 both accelerating tumorigenesis. These findings demonstrate that human NES cells provide a potent experimental resource for dissecting genetic causation in medulloblastoma.


GABP couples oncogene signaling to telomere regulation in TERT promoter mutant cancer.

  • Andrew M McKinney‎ et al.
  • Cell reports‎
  • 2022‎

Telomerase activation counteracts senescence and telomere erosion caused by uncontrolled proliferation. Epidermal growth factor receptor (EGFR) amplification drives proliferation while telomerase reverse transcriptase promoter (TERTp) mutations underlie telomerase reactivation through recruitment of GA-binding protein (GABP). EGFR amplification and TERTp mutations typically co-occur in glioblastoma, the most common and aggressive primary brain tumor. To determine if these two frequent alterations driving proliferation and immortality are functionally connected, we combine analyses of copy number, mRNA, and protein data from tumor tissue with pharmacologic and genetic perturbations. We demonstrate that proliferation arrest decreases TERT expression in a GABP-dependent manner and elucidate a critical proliferation-to-immortality pathway from EGFR to TERT expression selectively from the mutant TERTp through activation of AMP-mediated kinase (AMPK) and GABP upregulation. EGFR-AMPK signaling promotes telomerase activity and maintains telomere length. These results define how the tumor cell immortality mechanism keeps pace with persistent oncogene signaling and cell cycling.


Glioma cells with the IDH1 mutation modulate metabolic fractional flux through pyruvate carboxylase.

  • Jose L Izquierdo-Garcia‎ et al.
  • PloS one‎
  • 2014‎

Over 70% of low-grade gliomas carry a heterozygous R132H mutation in the gene coding for isocitrate dehydrogenase 1 (IDH1). This confers the enzyme with the novel ability to convert α-ketoglutarate to 2-hydroxyglutarate, ultimately leading to tumorigenesis. The major source of 2-hydroxyglutarate production is glutamine, which, in cancer, is also a source for tricarboxylic acid cycle (TCA) anaplerosis. An alternate source of anaplerosis is pyruvate flux via pyruvate carboxylase (PC), which is a common pathway in normal astrocytes. The goal of this study was to determine whether PC serves as a source of TCA anaplerosis in IDH1 mutant cells wherein glutamine is used for 2-hydroxyglutarate production.


Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes.

  • David Castel‎ et al.
  • Acta neuropathologica‎
  • 2015‎

Diffuse intrinsic pontine glioma (DIPG) is the most severe paediatric solid tumour, with no significant therapeutic progress made in the past 50 years. Recent studies suggest that diffuse midline glioma, H3-K27M mutant, may comprise more than one biological entity. The aim of the study was to determine the clinical and biological variables that most impact their prognosis. Ninety-one patients with classically defined DIPG underwent a systematic stereotactic biopsy and were included in this observational retrospective study. Histone H3 genes mutations were assessed by immunochemistry and direct sequencing, whilst global gene expression profiling and chromosomal imbalances were determined by microarrays. A full description of the MRI findings at diagnosis and at relapse was integrated with the molecular profiling data and clinical outcome. All DIPG but one were found to harbour either a somatic H3-K27M mutation and/or loss of H3K27 trimethylation. We also discovered a novel K27M mutation in HIST2H3C, and a lysine-to-isoleucine substitution (K27I) in H3F3A, also creating a loss of trimethylation. Patients with tumours harbouring a K27M mutation in H3.3 (H3F3A) did not respond clinically to radiotherapy as well, relapsed significantly earlier and exhibited more metastatic recurrences than those in H3.1 (HIST1H3B/C). H3.3-K27M-mutated DIPG have a proneural/oligodendroglial phenotype and a pro-metastatic gene expression signature with PDGFRA activation, while H3.1-K27M-mutated tumours exhibit a mesenchymal/astrocytic phenotype and a pro-angiogenic/hypoxic signature supported by expression profiling and radiological findings. H3K27 alterations appear as the founding event in DIPG and the mutations in the two main histone H3 variants drive two distinct oncogenic programmes with potential specific therapeutic targets.


Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment.

  • Qianghu Wang‎ et al.
  • Cancer cell‎
  • 2017‎

We leveraged IDH wild-type glioblastomas, derivative neurospheres, and single-cell gene expression profiles to define three tumor-intrinsic transcriptional subtypes designated as proneural, mesenchymal, and classical. Transcriptomic subtype multiplicity correlated with increased intratumoral heterogeneity and presence of tumor microenvironment. In silico cell sorting identified macrophages/microglia, CD4+ T lymphocytes, and neutrophils in the glioma microenvironment. NF1 deficiency resulted in increased tumor-associated macrophages/microglia infiltration. Longitudinal transcriptome analysis showed that expression subtype is retained in 55% of cases. Gene signature-based tumor microenvironment inference revealed a decrease in invading monocytes and a subtype-dependent increase in macrophages/microglia cells upon disease recurrence. Hypermutation at diagnosis or at recurrence associated with CD8+ T cell enrichment. Frequency of M2 macrophages detection associated with short-term relapse after radiation therapy.


Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors.

  • Johanna Theruvath‎ et al.
  • Nature medicine‎
  • 2020‎

Atypical teratoid/rhabdoid tumors (ATRTs) typically arise in the central nervous system (CNS) of children under 3 years of age. Despite intensive multimodal therapy (surgery, chemotherapy and, if age permits, radiotherapy), median survival is 17 months1,2. We show that ATRTs robustly express B7-H3/CD276 that does not result from the inactivating mutations in SMARCB1 (refs. 3,4), which drive oncogenesis in ATRT, but requires residual SWItch/Sucrose Non-Fermentable (SWI/SNF) activity mediated by BRG1/SMARCA4. Consistent with the embryonic origin of ATRT5,6, B7-H3 is highly expressed on the prenatal, but not postnatal, brain. B7-H3.BB.z-chimeric antigen receptor (CAR) T cells administered intracerebroventricularly or intratumorally mediate potent antitumor effects against cerebral ATRT xenografts in mice, with faster kinetics, greater potency and reduced systemic levels of inflammatory cytokines compared to CAR T cells administered intravenously. CAR T cells administered ICV also traffic from the CNS into the periphery; following clearance of ATRT xenografts, B7-H3.BB.z-CAR T cells administered intracerebroventricularly or intravenously mediate antigen-specific protection from tumor rechallenge, both in the brain and periphery. These results identify B7-H3 as a compelling therapeutic target for this largely incurable pediatric tumor and demonstrate important advantages of locoregional compared to systemic delivery of CAR T cells for the treatment of CNS malignancies.


Multiscale, multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas.

  • Michael E Berens‎ et al.
  • PloS one‎
  • 2019‎

Glioma is recognized to be a highly heterogeneous CNS malignancy, whose diverse cellular composition and cellular interactions have not been well characterized. To gain new clinical- and biological-insights into the genetically-bifurcated IDH1 mutant (mt) vs wildtype (wt) forms of glioma, we integrated data from protein, genomic and MR imaging from 20 treatment-naïve glioma cases and 16 recurrent GBM cases. Multiplexed immunofluorescence (MxIF) was used to generate single cell data for 43 protein markers representing all cancer hallmarks, Genomic sequencing (exome and RNA (normal and tumor) and magnetic resonance imaging (MRI) quantitative features (protocols were T1-post, FLAIR and ADC) from whole tumor, peritumoral edema and enhancing core vs equivalent normal region were also collected from patients. Based on MxIF analysis, 85,767 cells (glioma cases) and 56,304 cells (GBM cases) were used to generate cell-level data for 24 biomarkers. K-means clustering was used to generate 7 distinct groups of cells with divergent biomarker profiles and deconvolution was used to assign RNA data into three classes. Spatial and molecular heterogeneity metrics were generated for the cell data. All features were compared between IDH mt and IDHwt patients and were finally combined to provide a holistic/integrated comparison. Protein expression by hallmark was generally lower in the IDHmt vs wt patients. Molecular and spatial heterogeneity scores for angiogenesis and cell invasion also differed between IDHmt and wt gliomas irrespective of prior treatment and tumor grade; these differences also persisted in the MR imaging features of peritumoral edema and contrast enhancement volumes. A coherent picture of enhanced angiogenesis in IDHwt tumors was derived from multiple platforms (genomic, proteomic and imaging) and scales from individual proteins to cell clusters and heterogeneity, as well as bulk tumor RNA and imaging features. Longer overall survival for IDH1mt glioma patients may reflect mutation-driven alterations in cellular, molecular, and spatial heterogeneity which manifest in discernable radiological manifestations.


Missense-depleted regions in population exomes implicate ras superfamily nucleotide-binding protein alteration in patients with brain malformation.

  • Xiaoyan Ge‎ et al.
  • NPJ genomic medicine‎
  • 2016‎

Genomic sequence interpretation can miss clinically relevant missense variants for several reasons. Rare missense variants are numerous in the exome and difficult to prioritise. Affected genes may also not have existing disease association. To improve variant prioritisation, we leverage population exome data to identify intragenic missense-depleted regions (MDRs) genome-wide that may be important in disease. We then use missense depletion analyses to help prioritise undiagnosed disease exome variants. We demonstrate application of this strategy to identify a novel gene association for human brain malformation. We identified de novo missense variants that affect the GDP/GTP-binding site of ARF1 in three unrelated patients. Corresponding functional analysis suggests ARF1 GDP/GTP-activation is affected by the specific missense mutations associated with heterotopia. These findings expand the genetic pathway underpinning neurologic disease that classically includes FLNA. ARF1 along with ARFGEF2 add further evidence implicating ARF/GEFs in the brain. Using functional ontology, top MDR-containing genes were highly enriched for nucleotide-binding function, suggesting these may be candidates for human disease. Routine consideration of MDR in the interpretation of exome data for rare diseases may help identify strong genetic factors for many severe conditions, infertility/reduction in reproductive capability, and embryonic conditions contributing to preterm loss.


The driver landscape of sporadic chordoma.

  • Patrick S Tarpey‎ et al.
  • Nature communications‎
  • 2017‎

Chordoma is a malignant, often incurable bone tumour showing notochordal differentiation. Here, we defined the somatic driver landscape of 104 cases of sporadic chordoma. We reveal somatic duplications of the notochordal transcription factor brachyury (T) in up to 27% of cases. These variants recapitulate the rearrangement architecture of the pathogenic germline duplications of T that underlie familial chordoma. In addition, we find potentially clinically actionable PI3K signalling mutations in 16% of cases. Intriguingly, one of the most frequently altered genes, mutated exclusively by inactivating mutation, was LYST (10%), which may represent a novel cancer gene in chordoma.Chordoma is a rare often incurable malignant bone tumour. Here, the authors investigate driver mutations of sporadic chordoma in 104 cases, revealing duplications in notochordal transcription factor brachyury (T), PI3K signalling mutations, and mutations in LYST, a potential novel cancer gene in chordoma.


A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma.

  • QiWen Fan‎ et al.
  • Cancer cell‎
  • 2017‎

Although signaling from phosphatidylinositol 3-kinase (PI3K) and AKT to mechanistic target of rapamycin (mTOR) is prominently dysregulated in high-grade glial brain tumors, blockade of PI3K or AKT minimally affects downstream mTOR activity in glioma. Allosteric mTOR inhibitors, such as rapamycin, incompletely block mTORC1 compared with mTOR kinase inhibitors (TORKi). Here, we compared RapaLink-1, a TORKi linked to rapamycin, with earlier-generation mTOR inhibitors. Compared with rapamycin and Rapalink-1, TORKi showed poor durability. RapaLink-1 associated with FKBP12, an abundant mTOR-interacting protein, enabling accumulation of RapaLink-1. RapaLink-1 showed better efficacy than rapamycin or TORKi, potently blocking cancer-derived, activating mutants of mTOR. Our study re-establishes mTOR as a central target in glioma and traces the failure of existing drugs to incomplete/nondurable inhibition of mTORC1.


Prospective genomically guided identification of "early/evolving" and "undersampled" IDH-wildtype glioblastoma leads to improved clinical outcomes.

  • Yalan Zhang‎ et al.
  • Neuro-oncology‎
  • 2022‎

Genomic profiling studies of diffuse gliomas have led to new improved classification schemes that better predict patient outcomes compared to conventional histomorphology alone. One example is the recognition that patients with IDH-wildtype diffuse astrocytic gliomas demonstrating lower-grade histologic features but genomic and/or epigenomic profile characteristic of glioblastoma typically have poor outcomes similar to patients with histologically diagnosed glioblastoma. Here we sought to determine the clinical impact of prospective genomic profiling for these IDH-wildtype diffuse astrocytic gliomas lacking high-grade histologic features but with molecular profile of glioblastoma.


Postoperative risk of IDH-mutant glioma-associated seizures and their potential management with IDH-mutant inhibitors.

  • Michael R Drumm‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

Seizures are a frequent complication of adult-type diffuse gliomas, and are often difficult to control with medications. Gliomas with mutations in isocitrate dehydrogenase 1 or 2 (IDHmut) are more likely than IDH-wild type (IDHwt) gliomas to cause seizures as part of their initial clinical presentation. However, whether IDHmut is also associated with seizures during the remaining disease course, and whether IDHmut inhibitors can reduce seizure risk, are unclear. Clinical multivariable analyses showed that preoperative seizures, glioma location, extent of resection, and glioma molecular subtype (including IDHmut status) all contributed to postoperative seizure risk in adult-type diffuse glioma patients, and that postoperative seizures were often associated with tumor recurrence. Experimentally, the metabolic product of IDHmut, d-2-hydroxyglutarate, rapidly synchronized neuronal spike firing in a seizure-like manner, but only when non-neoplastic glial cells were present. In vitro and in vivo models recapitulated IDHmut glioma-associated seizures, and IDHmut inhibitors currently being evaluated in glioma clinical trials inhibited seizures in those models, independent of their effects on glioma growth. These data show that postoperative seizure risk in adult-type diffuse gliomas varies in large part by molecular subtype, and that IDHmut inhibitors could play a key role in mitigating such risk in IDHmut glioma patients.


Conserved features of TERT promoter duplications reveal an activation mechanism that mimics hotspot mutations in cancer.

  • Carter J Barger‎ et al.
  • Nature communications‎
  • 2022‎

Mutations in the TERT promoter represent the genetic underpinnings of tumor cell immortality. Beyond the two most common point mutations, which selectively recruit the ETS factor GABP to activate TERT, the significance of other variants is unknown. In seven cancer types, we identify duplications of wildtype sequence within the core promoter region of TERT that have strikingly similar features including an ETS motif, the duplication length and insertion site. The duplications recruit a GABP tetramer by virtue of the native ETS motif and its precisely spaced duplicated counterpart, activate the promoter and are clonal in a TERT expressing multifocal glioblastoma. We conclude that recurrent TERT promoter duplications are functionally and mechanistically equivalent to the hotspot mutations that confer tumor cell immortality. The shared mechanism of these divergent somatic genetic alterations suggests a strong selective pressure for recruitment of the GABP tetramer to activate TERT.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: