Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 83 papers

Downregulation of stathmin 1 in human gallbladder carcinoma inhibits tumor growth in vitro and in vivo.

  • Jiwen Wang‎ et al.
  • Scientific reports‎
  • 2016‎

Gallbladder carcinoma (GBC) is a highly lethal malignancy of the gastrointestinal tract. Despite extensive research, the underlying molecular mechanism of GBC remains largely unclear. Stathmin 1 (STMN1) is an important cytosolic protein associated with microtubule stability that was reported to be involved in tumorigenesis. Up to our knowledge, its role in gallbladder carcinoma has not been analyzed. In this study, we found that STMN1 was significantly highly expressed in GBC by immunohistochemistry (IHC). Further research demonstrated that silencing of STMN1 inhibited cell growth in vitro. Moreover, knockdown of STMN1 induced apoptosis and delayed G2/M phase transformation in GBC cells. Our data support a rationale for further studies that the silencing of STMN1 may regulate the activity of p38 MAPK kinase and p53/p21 signal pathway. Besides, xenografted gallbladder carcinoma cells growth were significantly impaired after STMN1 was silenced in vivo. These results suggested that STMN1 played an important role in cell proliferation and migration. This provided a potential clue for investigating the therapeutic target in GBC.


Genomic and immunologic factors associated with viral pathogenesis in a lethal EV71 infected neonatal mouse model.

  • Yingying Yue‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Hand, foot and mouth disease (HFMD) caused by enterovirus 71 (EV71) has emerged as a major health problem in China and worldwide. The present study aimed to understand the virological features of EV71 and host responses resulting from EV71 infection. Six different EV71 strains were isolated from HFMD patients with severe or mild clinical symptoms, and were analyzed for pathogenicity in vitro and in vivo. The results demonstrated that the six virus strains exhibited similar cytopathogenic effects on susceptible MA104 cells. However, marked differences in histological and immunopathological changes were observed when mice were inoculated with the different virus strains. Thus, the viruses studied were divided into two groups, highly or weakly pathogenic. Two representative virus strains, JN200804 and JN200803 (highly and weakly pathogenic, respectively) were studied further to investigate pathogenicity-associated factors, including genetic mutations and immunopathogenesis. The present study has demonstrated that highly pathogenic strains have stable genome and amino acid sequences. Notably, the present study demonstrated that a highly pathogenic strain induced a significant increase of the bulk CD4 T cell levels at 3 days post‑inoculation. In conclusion, the current study demonstrates that genomic and immunologic factors may be responsible for the multiple tissue damage caused by highly pathogenic EV71 infection.


Leptin exerts proliferative and anti-apoptotic effects on goose granulosa cells through the PI3K/Akt/mTOR signaling pathway.

  • Rui Wen‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2015‎

Leptin was known as a pivotal regulator for the control of food intake and energy expenditure. However, leptin has also been found to be involved in the regulation of female reproductive system through interactions with pathways in the hypothalamic-hypophyseal axis and direct action at the ovarian level. In the present study, granulosa cells from goose ovarian preovulatory (F1-F3) follicles were cultured with leptin (0, 1, 10 or 100ng/ml). The proliferative and anti-apoptotic actions of leptin in granulosa cells were revealed by CCK-8, BrdU and TUNEL assays. Quantitative real-time PCR and Western blot analyses further indicated that leptin treatment led to increased expression of cyclin D1, cyclin D2, cyclin D3 and bcl-2, and decreased expression of p21 and caspase-3. The effects were involved in the activation of the PI3K/Akt/mTOR signaling pathway, as leptin treatment enhanced the expression of PI3K, Akt1, Akt2, Raptor, mTOR, S6K and p-S6K. Moreover, blockade of the PI3K/Akt/mTOR pathway attenuated the influences of leptin on proliferation and apoptosis of granulosa cells, considering that activated factors by leptin were inhibited in the presence of either 20μM LY294002 (a PI3K inhibitor) or 10μM rapamycin (an mTOR inhibitor). In addition, leptin had a modulatory effect on the expression of its receptor at the transcriptional and translational levels, and blockade of PI3K/Akt/mTOR inhibited both basal and leptin-induced Lepr gene and protein expression. These findings suggest that leptin exerts its proliferative and anti-apoptotic effects on goose granulosa cells through the PI3K/Akt/mTOR signaling pathway via interaction with its receptor.


Akirin1 promotes myoblast differentiation by modulating multiple myoblast differentiation factors.

  • Wenqiang Sun‎ et al.
  • Bioscience reports‎
  • 2019‎

Akirin1 is found to be involved in myoblast differentiation. However, the mechanism by which the Akirin1 gene regulates myoblast differentiation still remains unclear. In the present study, we found that ectopic expression of Akirin1 promoted myoblast differentiation by increasing the expression of myogenic regulatory factor (MRF) 4 (MRF4) and myocyte enhancer factor 2B (MEF2B) mRNA. Additionally, we showed that ectopic Akirin1 induced cell cycle arrest by up-regulating p21 mRNA. To further uncover the mechanism by which Akirin1 promotes myoblast differentiation, we showed that the enhanced Akirin1 increased the mRNA expression of P38α. Importantly, the enhanced MRF4 expression by Akirin1 can be abrogated by treatment of SB203580, a p38 inhibitor. Similarly, we found that enhanced MEF2B expression by Akirin1 can be abrogated by treatment with LY294002, a PI3K inhibitor. Together, our results indicate that Akirin1 promotes myoblast differentiation by acting on the p38 and PI3K pathways and subsequently inducing the expression of myoblast differentiation factors.


Bmp4 inhibits goose granulosa cell apoptosis via PI3K/AKT/Caspase-9 signaling pathway.

  • Junsong Yuan‎ et al.
  • Animal reproduction science‎
  • 2019‎

Bone morphogenetic protein 4 (BMP4) has an important role in regulating cellular proliferation, differentiation and apoptosis. It, however, is still unclear as to the mechanisms by which BMP4 regulates the apoptosis of granulosa cells (GCs) in geese. In the present study, there was cloning of the full-length coding sequence of goose BMP4 gene, which consisted of 1212 nucleotides encoding 403 amino acids. Its deduced amino acid sequence comprised one signal peptide, one TGFβ pro-peptide and one mature peptide domain. Results from conducting the quantitative real-time PCR (qPCR) indicated the relative abundances of BMP4 mRNA in geese GCs increased gradually from the relative abundances in pre-hierarchical follicles that were 4 to 6 mm in diameter to that in the fifth largest (F5) follicle and then relative abundances of BMP4 mRNA decreased with further development as the largest (F1) follicle. Results from use of the TUNEL assay indicated that overexpression of the goose BMP4 gene suppressed GC apoptosis and this was confirmed when relative abundances of the CAD, Caspase-9 and Caspase-3 proteins were determined using western blotting. In addition, overexpression of the BMP4 gene induced phosphorylation of AKT, which was inhibited with use of the PI3K inhibitor, LY294002. Co-transfection of BMP4 and LY294002 resulted in increased relative abundances of Caspase-9 and CAD proteins but had no effect on that of Caspase-3. Taken together, these results suggested that expression of the BMP4 gene resulted in a reduction in Caspase-9 protein leading to inhibition of GC apoptosis via the PI3K/AKT signaling pathway in geese.


Downregulation of CCL2 induced by the upregulation of microRNA-206 is associated with the severity of HEV71 encephalitis.

  • Guangyou Zhang‎ et al.
  • Molecular medicine reports‎
  • 2017‎

MicroRNAs (miRNAs) have been investigated widely as key regulators of gene expression in different diseases by affecting the miRNA‑mediated regulatory function. Human enterovirus 71 (HEV71) can cause a series of human diseases, including encephalitis. Chemokine (C‑C motif) ligand 2 (CCL2) is one of the important genes involved in regulating inflammation. However, the mechanisms underlying HEV71 encephalitis mediated by CCL2 remain to be elucidated. In the present study, reverse transcription‑quantitative polymerase chain reaction analysis was used to determine the expression level of miR‑206 and the mRNA expression of CCL2 in samples. Western blot analysis was used to detect the protein levels of CCL2. A luciferase assay was used to verify the miR‑206 target site in CCL2. A CCK‑8 assay and flow cytometry were used to determine cell proliferation and apoptosis. The results demonstrated that miR‑206 was downregulated in severe HEV71 encephalitis. Using bioinformatics analysis, miR‑206 was predicted to target the human CCL2 3'‑untranslated region (3'‑UTR). A dual‑luciferase assay demonstrated that miR‑206 downregulated the expression of CCL2 by directly targeting its 3'‑UTR, whereas CCL2 3'‑UTR mutations completely eliminated its interaction with miR‑206. The expression levels of miR‑206 and CCL2 were inversely correlated in cerebrospinal fluid. The expression of exogenous miRNA, which mimicked miR‑206 miRNA, decreased the protein and mRNA levels of CCL2, whereas the suppression of endogenous miR‑206 resulted in an increase of the protein and mRNA levels of CCL2. The present study also found that miR‑206 promoted NPC cell proliferation and reduced the apoptosis of NPC cells via CCL2. The mechanism is likely to involve suppression of the expression of miR‑206 and upregulation of the expression of CCL2, important in regulating the progress of HEV71 encephalitis. In conclusion, miR‑206 may be useful in the prognosis and treatment of HEV71 encephalitis.


Identification of key genes and pathways associated with obesity in children.

  • Ling Li‎ et al.
  • Experimental and therapeutic medicine‎
  • 2017‎

The present study aimed to identify potential key genes and pathways in obese children in order to explore possible molecular mechanisms associated with child obesity. The array dataset GSE29718 was downloaded from the Gene Expression Omnibus database. Subcutaneous adipose tissue samples derived from 7 obese children and 8 lean children were selected for the analysis. Differentially expressed genes (DEGs) in samples from obese children compared with those from lean children were analyzed by the limma package. Gene ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes and Reactome pathway enrichment analyses for up and downregulated genes were performed. A protein-protein interaction (PPI) network was constructed with Cytoscape software and important genes associated with obesity were determined using IRegulon. A total of 199 DEGs (79 up and 120 downregulated genes) were identified in the samples of obese children compared with those from lean children. The PPI network was established with 103 nodes and 147 protein pairs. Matrix metalloproteinase 9 (MMP9) and acetyl-CoA carboxylase β (ACACB) were identified as hub genes in the PPI network and may therefore be marker genes for child obesity. In addition, upregulated DEGs were enriched in Reactome pathways associated with the immune system. Besides, MMP9 was upregulated in immune system processes as a GO term in the category Biological Processes. The results of the present study indicated that MMP9, ACACB and immune system pathways may have a significant role in child obesity.


Long non-coding RNA expression profiles in gallbladder carcinoma identified using microarray analysis.

  • Jiwen Wang‎ et al.
  • Oncology letters‎
  • 2017‎

Gallbladder carcinoma (GBC) is the most common biliary tract cancer and exhibits poor patient prognosis. Previous studies have identified that long non-coding RNAs (lncRNAs) serve important regulatory roles in cancer biology. Alterations in lncRNAs are associated with several types of cancer. However, the contribution of lncRNAs to GBC remains unclear. To investigate the lncRNAs that are potentially involved in GBC, lncRNA profiles were identified in three pairs of human GBC and corresponding peri-carcinomatous tissue samples using microarray analysis. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to validate the microarray data. In order to elucidate potential functions, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes analysis, and network analysis were used to determine relevant signaling pathways. Abundant RNA probes were used, and 1,758 lncRNAs and 1,254 mRNAs were detected to be differentially expressed by the microarray. Compared with para-carcinoma tissue, numerous lncRNAs were markedly upregulated or downregulated in GBC. The results demonstrated that the lncRNAs that were downregulated in GBC were more numerous compared with the lncRNAs that were upregulated. Among them, RP11-152P17.2-006 was the most upregulated, whereas CTA-941F9.9 was the most downregulated. The RT-qPCR results were consistent with the microarray data. Pathway analysis indicated that five pathways corresponded to the differentially expressed transcripts. It was demonstrated that lncRNA expression in GBC was markedly altered, and a series of novel lncRNAs associated with GBC were identified. The results of the present study suggest that the functions of lncRNAs are important in GBC development and progression.


Identification of susceptibility variants to benign childhood epilepsy with centro-temporal spikes (BECTS) in Chinese Han population.

  • Xiu-Yu Shi‎ et al.
  • EBioMedicine‎
  • 2020‎

Benign Childhood Epilepsy with Centro-temporal Spikes (BECTS) is the most common form of idiopathic epilepsy in children, accounting for up to 23% of pediatric epilepsy. The pathogenesis of BECTS is unknown, but it is thought that genetic factors play a role in susceptibility to the disease.


Understanding the Genetic Domestication History of the Jianchang Duck by Genotyping and Sequencing of Genomic Genes Under Selection.

  • Lei Wang‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2020‎

The Jianchang duck is mainly distributed in Southwest China, and has the characteristics of fast growth rate and strong abilities in lipid deposition in the liver. In order to investigate the effects of domestication process on formation of the unique characteristics of Jianchang duck, the whole genome of sixteen individuals and three pooling of Jianchang duck were re-sequenced, and genome data of 70 mallards and 83 domestic ducks from thirteen different places in China were obtained from NCBI. The population stratification and evolution analysis showed gene exchanges existed between the Jianchang and other domestic duck populations, as well as Jianchang ducks and mallards. Genomic comparison between mallards and Jianchang ducks showed genes, including CNTN1, CHRNA9, and SHANK2, which is involved in brain and nerve development, experienced strong positive selection in the process of Jianchang duck domestication. The genomic comparison between Jianchang and domestic duck populations showed that HSD17B12 and ESM1, which affect lipid metabolism, experienced strong positive selection during the domestication process. FST analysis among populations of Jianchang duck with different plumage colors indicated that MITF was related to the phenotype of a white feather, while MC1R was related to the phenotype of hemp feather. Our results provided a base for the domestication process of Jianchang duck and the genomic genes for unique traits.


Comparative transcriptome analysis identifies crucial candidate genes and pathways in the hypothalamic-pituitary-gonadal axis during external genitalia development of male geese.

  • Bincheng Tang‎ et al.
  • BMC genomics‎
  • 2022‎

All birds reproduce via internal fertilization, but only ~3% of male birds possess the external genitalia that allows for intromission. Waterfowl (e.g., duck and goose) are representatives of them, and the external genitalia development of male geese is directly related to mating ability. Notably, some male geese show abnormal external genitalia development during ontogenesis. However, until now little is known about the molecular mechanisms of the external genitalia development in goose. In the present study, comparative transcriptomic analyses were performed on the hypothalamus, pituitary gland, testis, and external genitalia isolated from the 245-day-old male Tianfu meat geese showing normal (NEGG, n = 3) and abnormal (AEGG, n = 3) external genitals in order to provide a better understanding of the mechanisms controlling the development of the external genitalia in aquatic bird species.


Evidence Supporting the Regulatory Relationships through a Paracrine Pathway between the Sternum and Pectoral Muscles in Ducks.

  • Yanying Li‎ et al.
  • Genes‎
  • 2021‎

Muscles and bones are anatomically closely linked, and they can conduct communication by mechanical and chemical signals. However, the specific regulatory mechanism between the pectoral muscle and sternum in birds was largely unknown. The present study explored the potential relationship between them in ducks. The result of the sections showed that more nuclei in proliferate states were observed in the pectoral muscle fibers attached to the calcified sternum, than those attached to the un-calcified sternum. The RNA-seq identified 328 differentially expressed genes (DEGs) in the sternum between the calcified and un-calcified groups. Gene ontology (GO) showed that the DEGs were mainly enriched in pathways associated with calcification. In addition, DEGs in the muscles between the calcified and un-calcified sternum groups were mainly annotated to signal transduction receptor pathways. The expression patterns of genes encoding for secreted proteins, in bone (CXCL12, BMP7 and CTSK) and muscle (LGI1), were clustered with muscle development (MB) and bone calcification (KCNA1, OSTN, COL9A3, and DCN) related genes, respectively, indicating the regulatory relationships through a paracrine pathway existing between the sternum and pectoral muscles in ducks. Together, we demonstrated that the pectoral muscle development was affected by the sternal ossification states in ducks. The VEGFA, CXCL12, SPP1, NOG, and BMP7 were possibly the key genes to participate in the ossification of the duck sternum. We firstly listed evidence supporting the regulatory relationships through a paracrine pathway between the sternum and pectoral muscles in ducks, which provided scientific data for the study of the synergistic development of bone and skeletal muscle.


Comparative Analysis of Testicular Histology and lncRNA-mRNA Expression Patterns Between Landes Geese (Anser anser) and Sichuan White Geese (Anser cygnoides).

  • Mingxia Ran‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Landes geese and Sichuan White geese are two important genetic materials for commercial goose breeding. However, the differences in the male reproductive capacity between these two breeds and the potential molecular mechanisms and associated key genes have not been reported to date. The present study compared the testicular histology and mRNA-long non-coding RNA (lncRNA) expression patterns to reveal the differences in male reproductive performance between Sichuan White geese and Landes geese, as well as to explore the underlying molecular mechanisms. Histological results showed that the testicular organ index, semen volume, and long diameter of seminiferous tubules of Landes geese were significantly larger than those of Sichuan White geese. Analyses of mRNA-lncRNA expression profile showed that compared with Sichuan White geese, a total of 462 differentially expressed mRNAs (DEGs) (173 up-regulated and 289 down-regulated) and 329 differentially expressed lncRNAs (DE lncRNAs) (280 up-regulated, 49 down-regulated) were identified in Landes geese. Among these DEGs, there were 10 spermatogenesis-related and highly expressed (FPKM > 10) DEGs. Except for SEPP1, all of these DEGs were significantly up-regulated in the testes of Landes geese. Functional enrichment analysis indicated that the pathway related to metabolism progress and phosphoinositol signal is vitally responsible for differences in male reproductive performance between Landes geese and Sichuan White geese. These results show that compared with Sichuan White geese, the spermatogenesis in the testis of Landes geese was more active, which may be mainly related to the inositol phosphate signal. These data contribute to a better understanding of the mechanisms underlying different male reproductive performances between Landes geese and Sichuan White geese. This knowledge might eventually provide a theoretical basis for improving male reproductive performance in geese.


Clinical Presentation and Novel Pathogenic Variants among 68 Chinese Neurofibromatosis 1 Children.

  • Ruen Yao‎ et al.
  • Genes‎
  • 2019‎

Neurofibromatosis 1 (NF1) is one of the most common dominantly inherited genetic disorders worldwide, with an age-dependent phenotypic expression. Exploring the mutational spectrum and clinical presentation of NF1 patients at different ages from a diverse population will aid the understanding of genotype-phenotype correlations.


Effects of cage versus floor rearing system on goose intestinal histomorphology and cecal microbial composition.

  • Xuejian Li‎ et al.
  • Poultry science‎
  • 2022‎

Due to the demand for modern goose production and the pressure of environmental protection, the rearing systems of geese are changing from traditional waterside rearing to intensive rearing systems such as floor rearing (FR) and cage rearing (CR) systems. However, little is known about the effects of different rearing systems on goose intestinal functions and cecal microbial composition. Therefore, this study aimed to compare intestinal histomorphology and cecal microbial composition differences in geese reared under CR and FR at 270 d of age. Histomorphological analysis showed that the ileal villus height (VH) to crypt depth (CD) ratio was significantly greater in CR than in FR (P < 0.001). Taxonomic analysis showed that the dominant bacteria of cecal microorganisms in both rearing systems were roughly similar, with Bacteroidota, Firmicutes, Fusobacteriota, and Proteobacteria being the dominant phyla while Bacteroides, Fusobacterium, and uncultured_bacterium_o_Bacteroidales being the dominant genera. Differentially abundant taxa between CR and FR were also identified using Linear Discriminant Analysis Effect Size (LEfSe) analysis (P < 0.05, LDA score > 3.5). Megamonas and Anaerobiospirillum were significantly enriched in the CR group at the genus level, while uncultured_bacterium_f_Rikenellaceae and Sutterella were significantly enriched in the FR group. Notably, we found that the relative abundance of uncultured_bacterium_f_Rikenellaceae was significantly negatively correlated with the ileal VH and VH/CD (P < 0.05). The relative abundance of Megamonas and Anaerobiospirillum were significantly negatively correlated with abdominal fat weight and relative abdominal fat weight (P < 0.01), whereas that of Sutterella was significantly positively correlated with abdominal fat weight and relative abdominal fat weight (P < 0.01). Furthermore, PICRUSt2 analysis indicated that the lipid metabolism pathways of cecal microorganisms were lower enriched in CR than in FR. In conclusion, compared with FR, the CR significantly changed goose ileal histomorphological characteristics and cecal microbial composition, thereby affecting goose physiological functions and production performance.


Effects of different light intensities on the transcriptome changes of duck retina and pineal gland.

  • Jingjing Qi‎ et al.
  • Poultry science‎
  • 2022‎

The light intensity can affect the production performance of animals. The retina and pineal gland, closely linked, are directly photosensitive organs. This study evaluated the effect of light intensity on duck growth and investigated the effects of varying light intensities on retina and pineal gland transcriptome changes. The increase of light intensity will significantly decrease production performance, such as body weight, eviscerated weight, breast muscle weight, percentage of abdominal fat, etc. The RNA-seq revealed 967 and 201 differentially expressed genes (DEGs) in the retina and pineal gland under different light intensities, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) in the retina showed the DEGs were enriched in ECM-receptor interaction, Focal adhesion, Cell adhesion molecules (CAMs), Cytokine-cytokine receptor interaction, Melanogenesis, etc. Meanwhile, the DEGs in the pineal gland were mainly enriched in pathways associated with the mTOR signaling pathway, melanin production pathway, etc. Our results indicated that different light intensities might affect the function of the retina and pineal gland, including the melanin production of the retina and the secretion of melatonin in the pineal gland. Our study can provide a theoretical basis for the molecular mechanism of the effects of different light intensities on the retina and pineal gland.


lncRNA RP11-147L13.8 suppresses metastasis and chemo-resistance by modulating the phosphorylation of c-Jun protein in GBC.

  • Bohao Zheng‎ et al.
  • Molecular therapy oncolytics‎
  • 2021‎

Long non-coding RNAs (lncRNAs) have been identified as critical contributors in tumor progression for many types of cancer. However, their functions in gallbladder cancer (GBC) have not been systematically clarified. In this study, the clinical significance, biological function, and underlying mechanism of lncRNA RP11-147L13.8 in GBC were investigated. The quantitative real-time PCR result indicated that lncRNA RP11-147L13.8 was found to be recurrently downregulated in GBC tumor samples. Kaplan-Meier analysis revealed that decreased lncRNA RP11-147L13.8 expression level was associated with poor survival of GBC patients (p = 0.025). Then, both in vitro and in vivo experiments elucidated that the overexpression of lncRNA RP11-147L13.8 suppressed the migration and invasion abilities of GBC cells and promoted the sensitivity to gemcitabine of GBC cells. Furthermore, we found that lncRNA RP11-147L13.8 physically interacted with c-Jun protein and decreased the phosphorylation on serine-73 (c-Jun-Ser73), which might cause the enhancement of the migration, invasion, and sensitivity to gemcitabine of GBC tumor cells. In conclusion, our study identified lncRNA RP11-147L13.8 as a promising prognostic indicator for patients with GBC, providing insights into the molecular pathogenesis of GBC. lncRNA RP11-147L13.8 is a potential therapeutic combination for gemcitabine in GBC treatment.


Identification of polymorphic loci in the deiodinase 2 gene and their associations with head dimensions in geese.

  • Yan Deng‎ et al.
  • Animal bioscience‎
  • 2022‎

This study was conducted to clone and compare the molecular characteristics of the deiodinase 2 (DIO2) gene between Sichuan White geese and Landes geese, and to analyze the association between polymorphisms of the DIO2 gene and head dimensions in Tianfu meat geese.


Genome-wide association analysis reveals that EDNRB2 causes a dose-dependent loss of pigmentation in ducks.

  • Yang Xi‎ et al.
  • BMC genomics‎
  • 2021‎

Birds have various plumage color patterns, and spot is a common phenotype. Herein, we conducted genome-wide association studies (GWAS) in a population of 225 ducks with different sized black spots to reveal the genetic basis of this phenomenon.


miR-27b-3p inhibits estrogen secretion of goose granulosa cells by targeting CYP1B1 through the AMPK signaling pathway.

  • Shenqiang Hu‎ et al.
  • Poultry science‎
  • 2023‎

Although miR-27b-3p has been evidenced to regulate the proliferation, apoptosis, and differentiation of a variety of mammalian cell types, its actions and mechanisms on ovarian cell steroidogenesis remains largely unknown in both mammalian and avian species. In this study, we aimed to determine the expression profiles of miR-27b-3p in granulosa cell layers during goose ovarian follicle development and to reveal its actions on estrogen (E2) secretion of goose granulosa cells as well as the underlying regulatory mechanisms. It was observed that miR-27b-3p was ubiquitously expressed throughout follicle development but exhibited much higher levels in hierarchical- than in prehierarchical follicles. In cultured granulosa cells from the fourth through second largest preovulatory (F4-F2) follicles of goose, up- and downregulation of miR-27b-3p by using its mimic and inhibitor significantly decreased and increased E2 secretion, respectively. Meanwhile, the mRNA levels of STAR and CYP19A1 were significantly reduced while those of CYP11A1 and 3βHSD were elevated in the mimic-transfected granulosa cells. By comparison, downregulation of miR-27b-3p enhanced the mRNA levels of STAR but had no significant effects on those of CYP19A1, CYP11A1, and 3βHSD. Results from bioinformatic prediction and luciferase reporter assay demonstrated that CYP1B1 was a downstream target of miR-27b-3p. Although the siRNA-mediated downregulation of CYP1B1 did not significantly change E2 secretion by goose granulosa cells, it reduced the mRNA levels of STAR and CYP19A1 as well as those of LKB1 and AMPKα, which are involved in the AMPK signaling pathway. Taken together, these data suggest that miR-27b-3p plays an inhibitory role in E2 secretion by goose F4-F2 granulosa cells, at least in part, by targeting CYP1B1 through the AMPK signaling pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: