Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,774 papers

The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury.

  • Li Li‎ et al.
  • Kidney international‎
  • 2008‎

Chemokines and their receptors such as CCR2 and CX3CR1 mediate leukocyte adhesion and migration into injured tissue. To further define mechanisms of monocyte trafficking during kidney injury we identified two groups of F4/80-positive cells (F4/80(low) and F4/80(high)) in the normal mouse kidney that phenotypically correspond to macrophages and dendritic cells, respectively. Following ischemia and 3 h of reperfusion, there was a large influx of F4/80(low) inflamed monocytes, but not dendritic cells, into the kidney. These monocytes produced TNF-alpha, IL-6, IL-1alpha and IL-12. Ischemic injury induced in CCR2(-/-) mice or in CCR2(+/+) mice, made chimeric with CCR2(-/-) bone marrow, resulted in lower plasma creatinine levels and their kidneys had fewer infiltrated F4/80(low) macrophages compared to control mice. CX3CR1 expression contributed to monocyte recruitment into inflamed kidneys, as ischemic injury in CX3CR1(-/-) mice was reduced, with fewer F4/80(low) macrophages than controls. Monocytes transferred from CCR2(+/+) or CX3CR1(+/-) mice migrated into reperfused kidneys better than monocytes from either CCR2(-/-) or CX3CR1(-/-) mice. Adoptive transfer of monocytes from CCR2(+/+) mice, but not CCR2(-/-) mice, reversed the protective effect in CCR2(-/-) mice following ischemia-reperfusion. Egress of CD11b(+)Ly6C(high) monocytes from blood into inflamed kidneys was CCR2- and CX3CR1-dependent. Our study shows that inflamed monocyte migration, through CCR2- and CX3CR1-dependent mechanisms, plays a critical role in kidney injury following ischemia reperfusion.


Natural diversity of potato (Solanum tuberosum) invertases.

  • Astrid M Draffehn‎ et al.
  • BMC plant biology‎
  • 2010‎

Invertases are ubiquitous enzymes that irreversibly cleave sucrose into fructose and glucose. Plant invertases play important roles in carbohydrate metabolism, plant development, and biotic and abiotic stress responses. In potato (Solanum tuberosum), invertases are involved in 'cold-induced sweetening' of tubers, an adaptive response to cold stress, which negatively affects the quality of potato chips and French fries. Linkage and association studies have identified quantitative trait loci (QTL) for tuber sugar content and chip quality that colocalize with three independent potato invertase loci, which together encode five invertase genes. The role of natural allelic variation of these genes in controlling the variation of tuber sugar content in different genotypes is unknown.


Wnt/calcium signaling mediates axon growth and guidance in the developing corpus callosum.

  • B Ian Hutchins‎ et al.
  • Developmental neurobiology‎
  • 2011‎

It has been shown in vivo that Wnt5a gradients surround the corpus callosum and guide callosal axons after the midline (postcrossing) by Wnt5a-induced repulsion via Ryk receptors. In dissociated cortical cultures we showed that Wnt5a simultaneously promotes axon outgrowth and repulsion by calcium signaling. Here to test the role of Wnt5a/calcium signaling in a complex in vivo environment we used sensorimotor cortical slices containing the developing corpus callosum. Plasmids encoding the cytoplasmic marker DsRed and the genetically encoded calcium indicator GCaMP2 were electroporated into one cortical hemisphere. Postcrossing callosal axons grew 50% faster than pre-crossing axons and higher frequencies of calcium transients in axons and growth cones correlated well with outgrowth. Application of pharmacological inhibitors to the slices showed that signaling pathways involving calcium release through IP3 receptors and calcium entry through TRP channels regulate post-crossing axon outgrowth and guidance. Co-electroporation of Ryk siRNA and DsRed revealed that knock down of the Ryk receptor reduced outgrowth rates of postcrossing but not precrossing axons by 50% and caused axon misrouting. Guidance errors in axons with Ryk knockdown resulted from reduced calcium activity. In the corpus callosum CaMKII inhibition reduced the outgrowth rate of postcrossing (but not precrossing) axons and caused severe guidance errors which resulted from reduced CaMKII-dependent repulsion downstream of Wnt/calcium. We show for the first time that Wnt/Ryk calcium signaling mechanisms regulating axon outgrowth and repulsion in cortical cultures are also essential for the proper growth and guidance of postcrossing callosal axons which involve axon repulsion through CaMKII.


Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions.

  • Rong Chen‎ et al.
  • PLoS computational biology‎
  • 2010‎

Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering more than 30% of United States mortality. We hypothesized that genes coding for serum- and urine-detectable proteins, and showing differential expression of RNA in disease-damaged tissues would make ideal diagnostic protein biomarkers for those diseases. We showed that predicted protein biomarkers are significantly enriched for known diagnostic protein biomarkers in 22 diseases, with enrichment significantly higher in diseases for which at least three datasets are available. We then used this strategy to search for new biomarkers indicating acute rejection (AR) across different types of transplanted solid organs. We integrated three biopsy-based microarray studies of AR from pediatric renal, adult renal and adult cardiac transplantation and identified 45 genes upregulated in all three. From this set, we chose 10 proteins for serum ELISA assays in 39 renal transplant patients, and discovered three that were significantly higher in AR. Interestingly, all three proteins were also significantly higher during AR in the 63 cardiac transplant recipients studied. Our best marker, serum PECAM1, identified renal AR with 89% sensitivity and 75% specificity, and also showed increased expression in AR by immunohistochemistry in renal, hepatic and cardiac transplant biopsies. Our results demonstrate that integrating gene expression microarray measurements from disease samples and even publicly-available data sets can be a powerful, fast, and cost-effective strategy for the discovery of new diagnostic serum protein biomarkers.


Evolution of new genotype of West Nile virus in North America.

  • Allison R McMullen‎ et al.
  • Emerging infectious diseases‎
  • 2011‎

Previous studies of North American isolates of West Nile virus (WNV) during 1999-2005 suggested that the virus had reached genetic homeostasis in North America. However, genomic sequencing of WNV isolates from Harris County, Texas, during 2002-2009 suggests that this is not the case. Three new genetic groups have been identified in Texas since 2005. Spread of the southwestern US genotype (SW/WN03) from the Arizona/Colorado/northern Mexico region to California, Illinois, New Mexico, New York, North Dakota, and the Texas Gulf Coast demonstrates continued evolution of WNV. Thus, WNV continues to evolve in North America, as demonstrated by selection of this new genotype. Continued surveillance of the virus is essential as it continues to evolve in the New World.


Inactivation of chk2 and mus81 leads to impaired lymphocytes development, reduced genomic instability, and suppression of cancer.

  • Samah El Ghamrasni‎ et al.
  • PLoS genetics‎
  • 2011‎

Chk2 is an effector kinase important for the activation of cell cycle checkpoints, p53, and apoptosis in response to DNA damage. Mus81 is required for the restart of stalled replication forks and for genomic integrity. Mus81(Δex3-4/Δex3-4) mice have increased cancer susceptibility that is exacerbated by p53 inactivation. In this study, we demonstrate that Chk2 inactivation impairs the development of Mus81(Δex3-4/Δex3-4) lymphoid cells in a cell-autonomous manner. Importantly, in contrast to its predicted tumor suppressor function, loss of Chk2 promotes mitotic catastrophe and cell death, and it results in suppressed oncogenic transformation and tumor development in Mus81(Δex3-4/Δex3-4) background. Thus, our data indicate that an important role for Chk2 is maintaining lymphocyte development and that dual inactivation of Chk2 and Mus81 remarkably inhibits cancer.


Gene discovery, comparative analysis and expression profile reveal the complexity of the Crassostrea gigas apoptosis system.

  • Linlin Zhang‎ et al.
  • Developmental and comparative immunology‎
  • 2011‎

Apoptosis system was reported to play important role in organism immunity, but it was a currently understudied respect in molluscan immunity studies. Base on the recent generation of ESTs in the pacific oyster, Crassostrea gigas, a survey of apoptosis-related molecules was conducted in the assembled unigenes, we found that the basic genes and domains in apoptosis-associated proteins were conserved, the overall apoptotic machinery was complex in C. gigas and that the organism had an expanded number of putative baculovirus inhibitor of apoptosis repeat domains. Moreover, four typical apoptosis-related genes were cloned in C. gigas and compared with the sequences of these genes in Drosophila melanogaster and Homo sapiens. The expression level of these four apoptosis-related genes in the hemolymph increased dramatically in the presence of the bacteria, Vibrio anguillarum, indicating their role in bacterial defense. Our results suggest that the oyster apoptosis system is not simple and cannot be represented by model invertebrates.


Functional characterization of putative cilia genes by high-content analysis.

  • Cary K Lai‎ et al.
  • Molecular biology of the cell‎
  • 2011‎

Cilia are microtubule-based protrusions from the cell surface that are involved in a number of essential signaling pathways, yet little is known about many of the proteins that regulate their structure and function. A number of putative cilia genes have been identified by proteomics and comparative sequence analyses, but functional data are lacking for the vast majority. We therefore monitored the effects in three cell lines of small interfering RNA (siRNA) knockdown of 40 of these genes by high-content analysis. We assayed cilia number, length, and transport of two different cargoes (membranous serotonin receptor 6-green fluorescent protein [HTR6-GFP] and the endogenous Hedgehog [Hh] pathway transcription factor Gli3) by immunofluorescence microscopy; and cilia function using a Gli-luciferase Hh signaling assay. Hh signaling was most sensitive to perturbations, with or without visible structural cilia defects. Validated hits include Ssa2 and mC21orf2 with ciliation defects; Ift46 with short cilia; Ptpdc1 and Iqub with elongated cilia; and Arl3, Nme7, and Ssna1 with distinct ciliary transport but not length defects. Our data confirm various ciliary roles for several ciliome proteins and show it is possible to uncouple ciliary cargo transport from cilia formation in vertebrates.


Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells.

  • Elizabeth M Muir‎ et al.
  • Journal of biotechnology‎
  • 2010‎

Although many eukaryotic proteins have been secreted by transfected bacterial cells, little is known about how a bacterial protein is treated as it passes through the secretory pathway when expressed in a eukaryotic cell. The eukaryotic N-glycosylation system could interfere with folding and secretion of prokaryotic proteins whose sequence has not been adapted for glycosylation in structurally appropriate locations. Here we show that such interference does indeed occur for chondroitinase ABC from the bacterium Proteus vulgaris, and can be overcome by eliminating potential N-glycosylation sites. Chondroitinase ABC was heavily glycosylated when expressed in mammalian cells or in a mammalian translation system, and this process prevented secretion of functional enzyme. Directed mutagenesis of selected N-glycosylation sites allowed efficient secretion of active chondroitinase. As these proteoglycans are known to inhibit regeneration of axons in the mammalian central nervous system, the modified chondroitinase gene is a potential tool for gene therapy to promote neural regeneration, ultimately in human spinal cord injury.


Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes.

  • Wei Wang‎ et al.
  • Journal of experimental botany‎
  • 2011‎

The cell wall is important for pollen tube growth, but little is known about the molecular mechanism that controls cell wall deposition in pollen tubes. Here, the functional characterization of the pollen-expressed Arabidopsis cellulose synthase-like D genes CSLD1 and CSLD4 that are required for pollen tube growth is reported. Both CSLD1 and CSLD4 are highly expressed in mature pollen grains and pollen tubes. The CSLD1 and CSLD4 proteins are located in the Golgi apparatus and transported to the plasma membrane of the tip region of growing pollen tubes, where cellulose is actively synthesized. Mutations in CSLD1 and CSLD4 caused a significant reduction in cellulose deposition in the pollen tube wall and a remarkable disorganization of the pollen tube wall layers, which disrupted the genetic transmission of the male gametophyte. In csld1 and csld4 single mutants and in the csld1 csld4 double mutant, all the mutant pollen tubes exhibited similar phenotypes: the pollen tubes grew extremely abnormally both in vitro and in vivo, which indicates that CSLD1 and CSLD4 are not functionally redundant. Taken together, these results suggest that CSLD1 and CSLD4 play important roles in pollen tube growth, probably through participation in cellulose synthesis of the pollen tube wall.


Electroacupuncture Suppressed Neuronal Apoptosis and Improved Cognitive Impairment in the AD Model Rats Possibly via Downregulation of Notch Signaling Pathway.

  • Hai-Dong Guo‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2015‎

Acupuncture is a potential strategy for the treatment of Alzheimer's disease (AD) and the possible mechanisms worth to be explored. In this study, we proposed and tested the hypothesis that whether Notch signaling pathway is involved in the effect of electroacupuncture (EA) treatment. Rats that received EA treatment on the acupoints of Baihui (Du 20) and Shenshu (BL 23) had shorter latency and remained in the original platform quadrant longer and crossed the former platform contained quadrant more frequently compared to the Aβ injection rats without EA treatment. EA obviously alleviated the cell apoptosis resulted by Aβ infusion in hippocampus CA1 regions through upregulating the expression of Bcl-2 and downregulating the expression of Bax. EA could further obviously promote the expression of synapsin-1 and synaptophysin in hippocampus. Aβ injection significantly increased the expression of Notch1, Jag1, and Hes1 mRNA, while EA treatment downregulated the level of Notch1 and Hes1 mRNA in hippocampus, but not Jag1 mRNA. Our data suggested that EA treatment improved learning and memory function in the AD rat model partially through downregulating Notch signaling pathway.


Ainsliadimer A selectively inhibits IKKα/β by covalently binding a conserved cysteine.

  • Ting Dong‎ et al.
  • Nature communications‎
  • 2015‎

Aberrant activation of NF-κB is associated with the development of cancer and autoimmune and inflammatory diseases. IKKs are well recognized as key regulators in the NF-κB pathway and therefore represent attractive targets for intervention with small molecule inhibitors. Herein, we report that a complex natural product ainsliadimer A is a potent inhibitor of the NF-κB pathway. Ainsliadimer A selectively binds to the conserved cysteine 46 residue of IKKα/β and suppresses their activities through an allosteric effect, leading to the inhibition of both canonical and non-canonical NF-κB pathways. Remarkably, ainsliadimer A induces cell death of various cancer cells and represses in vivo tumour growth and endotoxin-mediated inflammatory responses. Ainsliadimer A is thus a natural product targeting the cysteine 46 of IKKα/β to block NF-κB signalling. Therefore, it has great potential for use in the development of anticancer and anti-inflammatory therapies.


Is autonomic modulation different between European and Chinese astronauts?

  • Jiexin Liu‎ et al.
  • PloS one‎
  • 2015‎

The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences.


Effects of silencing key genes in the capsanthin biosynthetic pathway on fruit color of detached pepper fruits.

  • Shi-Lin Tian‎ et al.
  • BMC plant biology‎
  • 2014‎

There are many varieties of carotenoids in pepper fruits. Capsanthin is a red carotenoid that gives mature pepper fruits their red color. The red color in pepper fruits is regulated mainly by the genes capsanthin/capsorubin synthase(Ccs), phytoene synthase(Psy), lycopene-β-cyclase(Lcyb) and β-carotene hydroxylase(Crtz). There has been very limited research work related to the development and change in the red color during fruit formation and when a certain gene or several genes are deleted. In this paper, we constructed viral vectors, using the tobacco rattle virus (TRV), to carry the target gene to infect detached pepper fruits, and observed the fruits' color change. We used real-time quantitative PCR to analyze the gene silencing efficiency. At the same time, HPLC was used to determine the content of capsanthin and carotenoids that are associated with capsanthin synthesis when key genes in the pepper fruits were silenced.


Shifts in Abundance and Diversity of Soil Ammonia-Oxidizing Bacteria and Archaea Associated with Land Restoration in a Semi-Arid Ecosystem.

  • Zhu Chen‎ et al.
  • PloS one‎
  • 2015‎

The Grain to Green Project (GGP) is an unprecedented land restoration action in China. The project converted large areas (ca 10 million ha) of steep-sloped/degraded farmland and barren land into forest and grassland resulting in ecological benefits such as a reduction in severe soil erosion. It may also affect soil microorganisms involved in ammonia oxidization, which is a key step in the global nitrogen cycle. The methods for restoration that are typically adopted in semi-arid regions include abandoning farmland and growing drought tolerant grass (Lolium perenne L.) or shrubs (Caragana korshinskii Kom.). In the present study, the effects of these methods on the abundance and diversity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were evaluated via quantitative real-time PCR, terminal restriction fragment length polymorphism and clone library analysis of amoA genes. Comparisons were made between soil samples from three restored lands and the adjacent farmland in Inner Mongolia. Both the abundance and community composition of AOB were significantly different between the restored lands and the adjacent control. Significantly lower nitrification activity was observed for the restored land. Clone library analysis revealed that all AOB amoA gene sequences were affiliated with Nitrosospira. Abundance of the populations that were associated with Nitrosospira sp. Nv6 which had possibly adapted to high concentrations of inorganic nitrogen, decreased on the restored land. Only a slight difference in the AOB communities was observed between the restored land with and without the shrub (Caragana korshinskii Kom.). A minor effect of land restoration on AOA was observed. In summary, land restoration negatively affected the abundance of AOB and soil nitrification activities, suggesting the potential role of GGP in the leaching of nitrates, and in the emission of N2O in related terrestrial ecosystems.


The codon 72 polymorphism of the TP53 gene and endometriosis risk: a meta-analysis.

  • Yi Feng‎ et al.
  • Reproductive biomedicine online‎
  • 2015‎

Endometriosis is a chronic, inflammatory and common gynaecological disease. This study investigated the association between TP53 codon 72 polymorphism and the risk of endometriosis. A search for relevant articles was conducted in PubMed, Embase, CNKI, Wanfang, Weipu databases and Google Scholar. The strength of the relationships between TP53 codon 72 polymorphism and the risk of endometriosis was assessed by odds ratios (OR) and with 95% confidence intervals (CI). Sixteen case-control studies in 15 articles were included. Significant association was found in the dominant model (CC + GC versus GG) with an OR of 1.38 and 95% CI (1.14, 1.67). The results suggested that individuals who carried CC homozygote and heterozygote GC might have a 38% increased endometriosis risk when compared with the homozygote GG. In the subgroup analysis by ethnicity, significantly increased risk was observed among Asians (OR = 1.62, 95% CI = 1.18-2.23, P = 0.003) and Latin Americans (OR = 1.54, 95% CI = 1.16-2.03, P = 0.002) but not in Caucasians (OR = 1.02, 95% CI = 0.80-1.30) for the dominant model. The current meta-analysis suggested that TP53 codon 72 polymorphism was associated with the endometriosis risk, especially in Asians and Latin Americans.


Cardiac Nav 1.5 is modulated by ubiquitin protein ligase E3 component n-recognin UBR3 and 6.

  • Chunxia Zhao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

The voltage-gated Na(+) channel Nav 1.5 is essential for action potential (AP) formation and electrophysiological homoeostasis in the heart. The ubiquitin-proteasome system (UPS) is a major degradative system for intracellular proteins including ion channels. The ubiquitin protein ligase E3 component N-recognin (UBR) family is a part of the UPS; however, their roles in regulating cardiac Nav 1.5 channels remain elusive. Here, we found that all of the UBR members were expressed in cardiomyocytes. Individual knockdown of UBR3 or UBR6, but not of other UBR members, significantly increased Nav 1.5 protein levels in neonatal rat ventricular myocytes, and this effect was verified in HEK293T cells expressing Nav 1.5 channels. The UBR3/6-dependent regulation of Nav 1.5 channels was not transcriptionally mediated, and pharmacological inhibition of protein biosynthesis failed to counteract the increase in Nav 1.5 protein caused by UBR3/6 reduction, suggesting a degradative modulation of UBR3/6 on Nav 1.5. Furthermore, the effects of UBR3/6 knockdown on Nav 1.5 proteins were abolished under the inhibition of proteasome activity, and UBR3/6 knockdown reduced Nav 1.5 ubiquitylation. The double UBR3-UBR6 knockdown resulted in comparable increases in Nav 1.5 proteins to that observed for single knockdown of either UBR3 or UBR6. Electrophysiological recordings showed that UBR3/6 reduction-mediated increase in Nav 1.5 protein enhanced the opening of Nav 1.5 channels and thereby the amplitude of the AP. Thus, our findings indicate that UBR3/6 regulate cardiomyocyte Nav 1.5 channel protein levels via the ubiquitin-proteasome pathway. It is likely that UBR3/6 have the potential to be a therapeutic target for cardiac arrhythmias.


Cyclovirobuxine D Attenuates Doxorubicin-Induced Cardiomyopathy by Suppression of Oxidative Damage and Mitochondrial Biogenesis Impairment.

  • Qian Guo‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2015‎

The clinical application of doxorubicin (DOX) is compromised by its cardiac toxic effect. Cyclovirobuxine D (CVB-D) is a steroid alkaloid extracted from a traditional Chinese medicine, Buxus microphylla. Our results showed that CVB-D pretreatment markedly attenuated DOX-induced cardiac contractile dysfunction and histological alterations. By using TUNEL assay and western blot analysis, we found that CVB-D pretreatment reduced DOX-induced apoptosis of myocardial cells and mitochondrial cytochrome c release to cytosol. CVB-D pretreatment ameliorated DOX-induced cardiac oxidative damage including lipid peroxidation and protein carbonylation and a decrease in the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG). Moreover, CVB-D was found to prevent DOX-induced mitochondrial biogenesis impairment as evidenced by preservation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and nuclear respiratory factor 1 (NRF1), as well as mitochondrial DNA copy number. These findings demonstrate that CVB-D protects against DOX-induced cardiomyopathy, at least in part, by suppression of oxidative damage and mitochondrial biogenesis impairment.


Comparison of RNA-seq and microarray-based models for clinical endpoint prediction.

  • Wenqian Zhang‎ et al.
  • Genome biology‎
  • 2015‎

Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model.


Methylation and its role in the disposition of tanshinol, a cardiovascular carboxylic catechol from Salvia miltiorrhiza roots (Danshen).

  • Dan-dan Tian‎ et al.
  • Acta pharmacologica Sinica‎
  • 2015‎

Tanshinol is an important catechol in the antianginal herb Salvia miltiorrhiza roots (Danshen). This study aimed to characterize tanshinol methylation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: