Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

The Small GTPase Rac1 Contributes to Extinction of Aversive Memories of Drug Withdrawal by Facilitating GABAA Receptor Endocytosis in the vmPFC.

  • Weisheng Wang‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Extinction of aversive memories has been a major concern in neuropsychiatric disorders, such as anxiety disorders and drug addiction. However, the mechanisms underlying extinction of aversive memories are not fully understood. Here, we report that extinction of conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal in male rats activates Rho GTPase Rac1 in the ventromedial prefrontal cortex (vmPFC) in a BDNF-dependent manner, which determines GABAA receptor (GABAAR) endocytosis via triggering synaptic translocation of activity-regulated cytoskeleton-associated protein (Arc) through facilitating actin polymerization. Active Rac1 is essential and sufficient for GABAAR endocytosis and CPA extinction. Knockdown of Rac1 expression within the vmPFC of rats using Rac1-shRNA suppressed GABAAR endocytosis and CPA extinction, whereas expression of a constitutively active form of Rac1 accelerated GABAAR endocytosis and CPA extinction. The crucial role of GABAAR endocytosis in the LTP induction and CPA extinction is evinced by the findings that blockade of GABAAR endocytosis by a dynamin function-blocking peptide (Myr-P4) abolishes LTP induction and CPA extinction. Thus, the present study provides first evidence that Rac1-dependent GABAAR endocytosis plays a crucial role in extinction of aversive memories and reveals the sequence of molecular events that contribute to learning experience modulation of synaptic GABAAR endocytosis.SIGNIFICANCE STATEMENT This study reveals that Rac1-dependent GABAAR endocytosis plays a crucial role in extinction of aversive memories associated with drug withdrawal and identifies Arc as a downstream effector of Rac1 regulations of synaptic plasticity as well as learning and memory, thereby suggesting therapeutic targets to promote extinction of the unwanted memories.


GluA1 in Central Amygdala Promotes Opioid Use and Reverses Inhibitory Effect of Pain.

  • Yuan-Yuan Hou‎ et al.
  • Neuroscience‎
  • 2020‎

Increasing evidence suggests that long-term opioids and pain induce similar adaptive changes in the brain's reward circuits, however, how pain alters the addictive properties of opioids remains poorly understood. In this study using a rat model of morphine self-administration (MSA), we found that short-term pain, induced by an intraplantar injection of complete Freund's adjuvant (CFA), acutely decreased voluntary morphine intake, but not food intake, only at a morphine dose that did not affect pain itself. Pre-treatment with indomethacin, a non-opioid inhibitor of pain, before the pain induction blocked the decrease in morphine intake. In rats with steady MSA, the protein level of GluA1 subunits of glutamate AMPA receptors (AMPARs) was significantly increased, but that of GluA2 was decreased, resulting in an increased GluA1/GluA2 ratio in central nucleus of the amygdala (CeA). In contrast, pain decreased the GluA1/GluA2 ratio in the CeA of rats with MSA. Microinjection of NASPM, a selective inhibitor of homomeric GluA1-AMPARs, into CeA inhibited morphine intake. Furthermore, viral overexpression of GluA1 protein in CeA maintained morphine intake at a higher level than controls and reversed the pain-induced reduction in morphine intake. These findings suggest that CeA GluA1 promotes opioid use and its upregulation is sufficient to increase opioid consumption, which counteracts the acute inhibitory effect of pain on opioid intake. These results demonstrate that the CeA GluA1 is a shared target of opioid and pain in regulation of opioid use, which may aid in future development of therapeutic applications in opioid abuse.


Anteromedial thalamic nucleus to anterior cingulate cortex inputs modulate histaminergic itch sensation.

  • Ying-Zhi Deng‎ et al.
  • Neuropharmacology‎
  • 2020‎

Itch is an unpleasant feeling that triggers scratching behavior. Much progress has been made in identifying the mechanism of itch at the peripheral and spinal levels, however, itch circuits in the brain remain largely unexplored. We previously found that anterior cingulate cortex (ACC) to dorsal medial striatum (DMS) inputs modulated histamine-induced itch sensation, but how itch information was transmitted to ACC remained unclear. Here, we demonstrated that the anteromedial thalamic nucleus (AM) was activated during histaminergic itch, and there existed reciprocal neuronal projections between AM and ACC. Disconnection between AM and ACC resulted in a significant reduction of histaminergic, but not nonhistaminergic, itch-related scratching behavior. Optogenetic activation of AM-ACC, but not ACC-AM, projections evoked histaminergic itch sensation. Thus, our studies firstly reveal that AM is critical for histaminergic itch sensation and AM-ACC projections modulate histaminergic itch-induced scratching behavior.


The claustrum-prelimbic cortex circuit through dynorphin/κ-opioid receptor signaling underlies depression-like behaviors associated with social stress etiology.

  • Yu-Jun Wang‎ et al.
  • Nature communications‎
  • 2023‎

Ample evidence has suggested the stress etiology of depression, but the underlying mechanism is not fully understood yet. Here, we report that chronic social defeat stress (CSDS) attenuates the excitatory output of the claustrum (CLA) to the prelimbic cortex (PL) through the dynorphin/κ-opioid receptor (KOR) signaling, being critical for depression-related behaviors in male mice. The CSDS preferentially impairs the excitatory output from the CLA onto the parvalbumin (PV) of the PL, leading to PL micronetwork dysfunction by disinhibiting pyramidal neurons (PNs). Optogenetic activation or inhibition of this circuit suppresses or promotes depressive-like behaviors, which is reversed by chemogenetic inhibition or activation of the PV neurons. Notably, manipulating the dynorphin/KOR signaling in the CLA-PL projecting terminals controls depressive-like behaviors that is suppressed or promoted by optogenetic activation or inhibition of CLA-PL circuit. Thus, this study reveals both mechanism of the stress etiology of depression and possibly therapeutic interventions by targeting CLA-PL circuit.


MiR-222-3p in Platelets Serves as a Distinguishing Marker for Early Recognition of Kawasaki Disease.

  • Bo Wang‎ et al.
  • Frontiers in pediatrics‎
  • 2019‎

Kawasaki disease (KD) is an acute vasculitis, which leads to 20% of sufferers developing coronary artery aneurysm in children if not appropriately treated. Therefore, the early diagnosis of KD is essential for alleviating the risk of developing heart disease. MicroRNAs (miRNAs) are a large class of small non-coding RNAs which post-transcriptionally regulate gene expression and have been shown to play critical roles in numerous biological processes and diseases. In this study, we used high-throughput miRNA sequencing and found dozens of miRNAs are highly expressed in platelets. By comparing the miRNA expression profile of platelets of acute KD patients and other febrile patients, miR-222-3p is validated to be significantly upregulated in platelets of acute KD patients. Furthermore, KEGG pathway analysis shows that targets of miR-222-3p are enriched in immune-related signaling pathways. Our study uncovers the potential of miR-222-3p in platelets as biomarker for early diagnosis of Kawasaki disease.


Heteromers of μ opioid and dopamine D1 receptors modulate opioid-induced locomotor sensitization in a dopamine-independent manner.

  • Yi-Min Tao‎ et al.
  • British journal of pharmacology‎
  • 2017‎

Exposure to opiates induces locomotor sensitization in rodents, which has been proposed to correspond to the compulsive drug-seeking behaviour. Numerous studies have demonstrated that locomotor sensitization can occur in a dopamine transmission-independent manner; however, the underlying mechanisms are unclear.


SYVN1, an ERAD E3 Ubiquitin Ligase, Is Involved in GABAAα1 Degradation Associated with Methamphetamine-Induced Conditioned Place Preference.

  • Dong-Liang Jiao‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2017‎

Abuse of methamphetamine (METH), a powerful addictive amphetamine-type stimulants (ATS), is becoming a global public health problem. The gamma-aminobutyric acid (GABA)ergic system plays a critical role in METH use disorders. By using rat METH conditioned place preference (CPP) model, we previously demonstrated that METH-associated rewarding memory formation was associated with the reduction of GABAAα1 expression in the dorsal straitum (Dstr), however, the underlying mechanism was unclear. In the present study, we found that METH-induced CPP formation was accompanied by a significant increase in the expression of Synovial apoptosis inhibitor 1 (SYVN1), an endoplasmic reticulum (ER)-associated degradation (ERAD) E3 ubiquitin ligase, in the Dstr. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in both primary cultured neurons and rodent Dstr. Inhibition of proteasomal activity by MG132 and Lactacystin significantly increased GABAAα1 protein levels. We further found that SYVN1 knockdown increased GABAAα1 in the intra-ER, but not in the extra-ER. Accordingly, endoplasmic reticulum stress (ERS)-associated Glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) increased. Thus, this study revealed that SYVN1, as the ERAD E3 ubiquitin ligase, was associated with Dstr GABAAα1 degradation induced by METH conditioned pairing.


7β-Methyl substituent is a structural locus associated with activity cliff for nepenthone analogues.

  • Hui-Jiao Sun‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2018‎

With the purpose of identifying novel selective κ opioid receptor (KOR) antagonists as potential antidepressants from nepenthone analogues, starting from N-nor-N-cyclopropylmethyl-nepenthone (SLL-020ACP), a highly selective and potent KOR agonist, a series of 7β-methyl-nepenthone analogues was conceived, synthesized and assayed on opioid receptors based on the concept of hybridization. According to the pharmacological results, the functional reversal observed in orvinol analogues by introduction of 7β-methyl substituent could not be reproduced in nepenthone analogues. Alternatively, introduction of 7β-methyl substituent was associated with substantial loss of both subtype selectivity and potency but not efficacy for nepenthone analogues, which was not found in 7β-methyl orvinol analogues. Surprisingly, SLL-603, a 7β-methyl analogue of SLL-020ACP, was identified to be a KOR full agonist. The possible molecular mechanism for the heterogeneity in activity cliff was also investigated. In conclusion, 7β-methyl substituent was a structural locus associated with activity cliff and demonstrated as a pharmacological heterogeneity between nepenthone and orvinol analogues that warrants further investigations.


Paraventricular nucleus-central amygdala oxytocinergic projection modulates pain-related anxiety-like behaviors in mice.

  • Yu-Jie Li‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2023‎

Anxiety disorders associated with pain are a common health problem. However, the underlying mechanisms remain poorly understood. We aimed to investigate the role of paraventricular nucleus (PVN)-central nucleus of the amygdala (CeA) oxytocinergic projections in anxiety-like behaviors induced by inflammatory pain.


Optogenetic activation of brainstem serotonergic neurons induces persistent pain sensitization.

  • You-Qing Cai‎ et al.
  • Molecular pain‎
  • 2014‎

The rostral ventromedial medulla (RVM) is a key brainstem structure that conveys powerful descending influence of the central pain-modulating system on spinal pain transmission and processing. Serotonergic (5-HT) neurons are a major component in the heterogeneous populations of RVM neurons and in the descending pathways from RVM. However, the descending influence of RVM 5-HT neurons on pain behaviors remains unclear.


Role for engagement of β-arrestin2 by the transactivated EGFR in agonist-specific regulation of δ receptor activation of ERK1/2.

  • Le-Sha Zhang‎ et al.
  • British journal of pharmacology‎
  • 2015‎

β-Arrestins function as signal transducers linking GPCRs to ERK1/2 signalling either by scaffolding members of ERK1/2s cascades or by transactivating receptor tyrosine kinases through Src-mediated release of transactivating factor. Recruitment of β-arrestins to the activated GPCRs is required for ERK1/2 activation. Our previous studies showed that δ receptors activate ERK1/2 through a β-arrestin-dependent mechanism without inducing β-arrestin binding to the δ receptors. However, the precise mechanisms involved remain to be established.


Src-dependent phosphorylation of μ-opioid receptor at Tyr336 modulates opiate withdrawal.

  • Lei Zhang‎ et al.
  • EMBO molecular medicine‎
  • 2017‎

Opiate withdrawal/negative reinforcement has been implicated as one of the mechanisms for the progression from impulsive to compulsive drug use. Increase in the intracellular cAMP level and protein kinase A (PKA) activities within the neurocircuitry of addiction has been a leading hypothesis for opiate addiction. This increase requires the phosphorylation of μ-opioid receptor (MOR) at Tyr336 by Src after prolonged opiate treatment in vitro Here, we report that the Src-mediated MOR phosphorylation at Tyr336 is a prerequisite for opiate withdrawal in mice. We observed the recruitment of Src in the vicinity of MOR and an increase in phosphorylated Tyr336 (pY336) levels during naloxone-precipitated withdrawal. The intracerebroventricular or stereotaxic injection of a Src inhibitor (AZD0530), or Src shRNA viruses attenuated pY336 levels, and several somatic withdrawal signs. This was also observed in Fyn-/- mice. The stereotaxic injection of wild-type MOR, but not mutant (Y336F) MOR, lentiviruses into the locus coeruleus of MOR-/- mice restored somatic withdrawal jumping. Regulating pY336 levels during withdrawal might be a future target for drug development to prevent opiate addictive behaviors.


Anxiolytic effect of GABAergic neurons in the anterior cingulate cortex in a rat model of chronic inflammatory pain.

  • Fang-Bing Shao‎ et al.
  • Molecular brain‎
  • 2021‎

Chronic pain easily leads to concomitant mood disorders, and the excitability of anterior cingulate cortex (ACC) pyramidal neurons (PNs) is involved in chronic pain-related anxiety. However, the mechanism by which PNs regulate pain-related anxiety is still unknown. The GABAergic system plays an important role in modulating neuronal activity. In this paper, we aimed to study how the GABAergic system participates in regulating the excitability of ACC PNs, consequently affecting chronic inflammatory pain-related anxiety. A rat model of CFA-induced chronic inflammatory pain displayed anxiety-like behaviors, increased the excitability of ACC PNs, and reduced inhibitory presynaptic transmission; however, the number of GAD65/67 was not altered. Interestingly, intra-ACC injection of the GABAAR agonist muscimol relieved anxiety-like behaviors but had no effect on chronic inflammatory pain. Intra-ACC injection of the GABAAR antagonist picrotoxin induced anxiety-like behaviors but had no effect on pain in normal rats. Notably, chemogenetic activation of GABAergic neurons in the ACC alleviated chronic inflammatory pain and pain-induced anxiety-like behaviors, enhanced inhibitory presynaptic transmission, and reduced the excitability of ACC PNs. Chemogenetic inhibition of GABAergic neurons in the ACC led to pain-induced anxiety-like behaviors, reduced inhibitory presynaptic transmission, and enhanced the excitability of ACC PNs but had no effect on pain in normal rats. We demonstrate that the GABAergic system mediates a reduction in inhibitory presynaptic transmission in the ACC, which leads to enhanced excitability of pyramidal neurons in the ACC and is associated with chronic inflammatory pain-related anxiety.


Antinociceptive activities and mechanism of action of Cepharanthine.

  • Xiang-Yan Wei‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Cepharanthine is an alkaloid that isolated from Stephania cepharantha Hayata, however,its analgesic properties are unclear and the molecular targets that mediating Cepharanthine-induced analgesia are not explored yet. In the current study, mice pain models including hot plate, acetic acid-induced writhing and formalin tests were conducted to evaluate the antinociceptive actions of Cepharanthine. [3H]-ligand competitive binding assay was applied to determine the binding affinity and selectivity of Cepharanthine at κ, μ and δ opioid receptors. Cepharanthine-induced constipation was investigated using the small intestinal transit test. The results showed that intraperitoneal injection of Cepharanthine produced potent antinociception with an ED50 value of 24.5 mg/kg in the acetic acid-induced writhing test. In the formalin test, Cepharanthine produced moderate antinociception with the maximum analgesic activity of 42.6 ± 11.3% in phase I and 60.1 ± 7.7% in phase Ⅱ, respectively. Cepharanthine had no effects in the hot plate test. In vitro radioligand binding assay, Cepharanthine exhibited a high affinity for μ opioid receptors with a Ki value of 80 nM, without binding to κ and δ opioid receptors. Correspondingly, Cepharanthine-mediated antinociceptive effects were antagonized by pretreatment with opioid receptor antagonist naloxone. Cepharanthine also decreased the small intestine propulsion rates in the small intestinal transit test. Together, this study firstly demonstrates that Cepharanthine produces potent antinociception in acetic acid-induced visceral pain and moderate antinociception in formalin-induced inflammatory pain, and its mechanism of action may be through activation of μ opioid receptors.


Ultrasonographic characteristics of medullary thyroid carcinoma: a comparison with papillary thyroid carcinoma.

  • Mei-Juan Liu‎ et al.
  • Oncotarget‎
  • 2017‎

This study was designed to explore differences in the ultrasonographic characteristics of medullary thyroid carcinoma (MTC) and papillary thyroid carcinoma (PTC). This study included 35 cases of MTC and 96 cases of PTC that were surgically and pathologically confirmed. Preoperative ultrasound images were retrospectively reviewed by two physicians (with 5 years' experience in thyroid ultrasound) under the premise of unknown pathological results. Various ultrasonic features of nodules were assessed objectively. The clinical features of components were determined by other physicians. Age, sex, unilateral or bilateral involvement of thyroid gland, lesion size, margin, shape, echogenicity, calcification, intranodular blood flow, cervical lymph node, and tumor node metastasis (TNM) stage were compared between MTC and PTC groups. Age, sex, involvement of the thyroid gland, margin, and calcification were similar for the MTC and PTC groups. Compared with the PTC group, the lesion size in the MTC group was significantly larger (P < 0.001). A taller-than-wide shape (aspect ratio > 1) was significantly less likely in the MTC group than the PTC group (P < 0.001). A mixed echogenicity was significantly more common in the MTC group than the PTC group (P = 0.003). The MTC group had significantly enhanced intranodular blood flow (P < 0.001). The TNM stage of the MTC group was significantly higher than that of PTC group (P = 0.001). Medullary thyroid carcinomas differ significantly from PTCs in lesion size, shape, echogenicity, and intranodular blood flow.


GluA1 in central amygdala increases pain but inhibits opioid withdrawal-induced aversion.

  • You-Qing Cai‎ et al.
  • Molecular pain‎
  • 2020‎

The amygdala is important in regulation of emotion-associated behavioral responses both to positive reinforcing stimuli such as addicting opioids and to negative aversive stimuli such as fear and pain. Glutamatergic neurotransmission in amygdala plays a predominant role in amygdala neuronal circuits involved in these emotional responses. However, how specific glutamate receptors act to mediate these amygdala functions remains poorly understood. In this study, we investigated the role of GluA1 subunits of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in central amygdala in modulating behavioral response to aversive stimuli by pain and by opioid withdrawal. We found that the protein level of GluA1 in the central nucleus of amygdala (CeA) was significantly increased in rats under persistent pain and viral upregulation of CeA GluA1 increased pain responses of both hyperalgesia and allodynia in rats. In contrast, the viral upregulation of CeA GluA1 inhibited, while knockdown of CeA GluA1 enhanced, place aversion induced by naloxone-precipitated morphine withdrawal. These results reveal a differential action of CeA GluA1 on the aversive event of sensory pain and opioid withdrawal, likely reflecting two distinct synaptic circuits of GluA1-predominant AMPA receptors within CeA for regulation of pain sensitivity and emotional response to opioid withdrawal.


Electroacupuncture Ameliorates Depression-Like Behaviors Comorbid to Chronic Neuropathic Pain via Tet1-Mediated Restoration of Adult Neurogenesis.

  • Yunyun Li‎ et al.
  • Stem cells (Dayton, Ohio)‎
  • 2023‎

Although electroacupuncture (EA) stimulation is a widely used therapy for chronic pain and comorbid psychiatric disorders, its long-term effects on chronic neuropathic pain-induced depression and the underlying mechanisms remain elusive. In the present study, we found that EA stimulation was able to restore adult neurogenesis in the ventral dentate gyrus (DG), by both increasing neuronal differentiation and restoring the normal morphology of newborn dendrites, in mice with spared nerve injury surgery. By ablating the Nestin+ neural stem cells (NSCs) via diphtheria toxin fragment A expression, we further proved that neurogenesis in the ventral DG was crucial to the long-term, but not the immediate antidepressant effect of EA, nor was it associated with nociception. Furthermore, we found that the restoration of neurogenesis was dependent on Tet1-mediated epigenetic modification upon EA treatment. Tet1 could bind to the promoter of the Prox1 gene, thus catalyzing its demethylation and facilitating its expression, which finally contributed to the restoration of neurogenesis and amelioration of depression-like behaviors induced by chronic neuropathic pain. Thus, we conclude that EA stimulation restores inhibited Tet1 expression in hippocampal NSCs of mice with chronic neuropathic pain, and increased Tet1 expression ameliorates hypermethylation of Prox1 and restores normal adult neurogenesis in the ventral DG, which contributes to the long-term antidepressant effect of EA.


Behavioural screening of zebrafish using neuroactive traditional Chinese medicine prescriptions and biological targets.

  • Ya-Nan Wang‎ et al.
  • Scientific reports‎
  • 2014‎

The mechanism of the therapeutic action of antidepressants remains uncertain in traditional Chinese medicine (TCM). In this study, we selected 7 classical TCM prescriptions and utilised an automatic video-tracking system to monitor the rest/wake behaviour of larval zebrafish at 4 days post-fertilisation (dpf) for 48 hours. We found that the curative effects of the prescriptions were dose-dependent. K-means clustering was performed according to the shared behavioural phenotypes of the zebrafish. The results revealed that the rest/wake behavioural profiles induced by the same class of prescriptions were similar. A correlation analysis was conducted between the TCM prescriptions and the known compounds. The results showed that the TCM prescriptions correlated well with some well-known compounds. Therefore, we predicted that they may share a similar mechanism of action. This paper describes the first study to combine TCM research with zebrafish rest/wake behaviour in vivo and presents a powerful approach for the discovery of the mechanism of action of TCM prescriptions.


The Agonist of Adenosine A1 Receptor Induced Desensitization of delta Opioid receptor-mediated Raf-1/MEK/ERK Signaling by Feedback Phosphorylation of Raf-1-Ser289/296/301.

  • Chi Xu‎ et al.
  • Neurochemical research‎
  • 2023‎

Our previous study found that activation of adenosine A1 receptor (A1R) induced phosphorylation of delta opioid receptor (DOR) and desensitization of its downstream signaling molecules, cAMP and Akt. To further investigate the effect of A1R agonist on DOR signaling and the underlying mechanism, we examined the effect of A1R activation upon binding of its agonist N6-cyclohexyl-adenosine (CHA) on DOR-mediated Raf-1/MEK/ERK activation, and found that prolonged CHA exposure resulted in downregulation of DOR-mediated Raf-1/MEK/ERK signaling pathway. CHA-treatment time dependently attenuated Raf-1-Ser338 phosphorylation induced by [D-Pen2,5] enkephalin (DPDPE), a specific agonist of DOR, and further caused downregulation of the Raf-1/MEK/ERK signaling pathway activated by DOR agonist. Moreover, CHA exposure time-dependently induced the phosphorylation of Raf-1-Ser289/296/301, the inhibitory phosphorylation sites that were regulated by negative feedback, thereby inhibiting activation of the MEK/ERK pathway, and this effect could be blocked by MEK inhibitor U0126. Finally, we proved that the heterologous desensitization of the Raf-1/MEK/ERK cascade was essential in the regulation of anti-nociceptive effect of DOR agonists by confirming that such effect was inhibited by pretreatment of CHA. Therefore, we conclude that the activation of A1R inhibits DOR-mediated MAPK signaling pathway via heterologous desensitization of the Raf-1/MEK/ERK cascade, which is a result of ERK-mediated Raf-1-Ser289/296/301 phosphorylation mediated by activation of A1R.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: