Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 53 papers

TMAO: a potential mediator of clopidogrel resistance.

  • Ruisong Ma‎ et al.
  • Scientific reports‎
  • 2021‎

Trimethylamine-N-oxide (TMAO) can activate platelets and increase thrombosis risk in clinical and experimental models. Meanwhile, the patients with coronary artery disease have higher serum TMAO level. However, it remains unknown whether Clopidogrel Resistance (CR) could be attributed to TMAO. The present study aimed investigate the effects of TMAO on clopidogrel in ischemia and reperfusion (IR) model in rats. Clopidogrel could (1) promote the production of platelets, induce an increase in the platelet-larger cell ratio; (2) prolong the tail bleeding time; (3) reduce platelet aggregation function, induced by ADP, and alleviate myocardial thrombus burden. TMAO could partially offset the effects of clopidogrel and induce CR. Thus, the present study demonstrated that circulating TMAO could reduce the inhibitory effects of clopidogrel on platelet aggregation. TMAO may be a potential mediator of clopidogrel resistance.


The copper resistance mechanism in a newly isolated Pseudoxanthomonas spadix ZSY-33.

  • Hongjie Wang‎ et al.
  • Environmental microbiology reports‎
  • 2023‎

Resolving the heavy metal resistance mechanisms of microbes is crucial for understanding the bioremediation of the ecological environment. In this study, a multiple heavy metal resistance bacterium, Pseudoxanthomonas spadix ZSY-33 was isolated and characterized. The copper resistance mechanism was revealed by analysis of the physiological traits, copper distribution, and genomic and transcriptomic data of strain ZSY-33 cultured with different concentrations of copper. The growth inhibition assay in basic medium showed that the growth of strain ZSY-33 was inhibited in the presence of 0.5 mM copper. The production of extracellular polymeric substances increased at a lower concentration of copper and decreased at a higher concentration of copper. Integrative analysis of genomic and transcriptomic, the copper resistance mechanism in strain ZSY-33 was elucidated. At a lower concentration of copper, the Cus and Cop systems were responsible for the homeostasis of intracellular copper. As the concentration of copper increased, multiple metabolism pathways, including the metabolism of sulfur, amino acids, and pro-energy were cooperated with the Cus and Cop systems to deal with copper stress. These results indicated a flexible copper resistance mechanism in strain ZSY-33, which may acquire from the long-term interaction with the living environment.


Calcineurin is required for pseudohyphal growth, virulence, and drug resistance in Candida lusitaniae.

  • Jing Zhang‎ et al.
  • PloS one‎
  • 2012‎

Candida lusitaniae is an emerging fungal pathogen that infects immunocompromised patients including HIV/AIDS, cancer, and neonatal pediatric patients. Though less prevalent than other Candida species, C. lusitaniae is unique in its ability to develop resistance to amphotericin B. We investigated the role of the calcium-activated protein phosphatase calcineurin in several virulence attributes of C. lusitaniae including pseudohyphal growth, serum survival, and growth at 37°C. We found that calcineurin and Crz1, a C. albicans Crz1 homolog acting as a downstream target of calcineurin, are required for C. lusitaniae pseudohyphal growth, a process for which the underlying mechanism remains largely unknown in C. lusitaniae but hyphal growth is fundamental to C. albicans virulence. We demonstrate that calcineurin is required for cell wall integrity, ER stress response, optimal growth in serum, virulence in a murine systemic infection model, and antifungal drug tolerance in C. lusitaniae. To further examine the potential of targeting the calcineurin signaling cascade for antifungal drug development, we examined the activity of a calcineurin inhibitor FK506 in combination with caspofungin against echinocandin resistant C. lusitaniae clinical isolates. Broth microdilution and drug disk diffusion assays demonstrate that FK506 has synergistic fungicidal activity with caspofungin against echinocandin resistant isolates. Our findings reveal that pseudohyphal growth is controlled by the calcineurin signaling cascade, and highlight the potential use of calcineurin inhibitors and caspofungin for emerging drug-resistant C. lusitaniae infections.


Prevalence of Transmitted HIV drug resistance in antiretroviral treatment naïve newly diagnosed individuals in China.

  • Shuai Zhao‎ et al.
  • Scientific reports‎
  • 2018‎

To investigate the prevalence and temporal trend of transmitted drug resistance (TDR), a nationwide cross-sectional survey was conducted among 5627 ART naïve newly diagnosed HIV-infected individuals in 2015 in China. Totally 4704 partial pol sequences were obtained. Among them, the most common HIV-1 circulating recombinant form (CRF) or subtype was CRF01_AE (39.0%), followed by CRF07_BC (35.6%), CRF08_BC (8.9%), and subtype B (5.5%). TDR mutations were found in 3.6% of the cases, with 1.1% harboring TDR to protease inhibitors (PIs), 1.3% having TDR to nucleoside reverse transcriptase inhibitors (NRTIs), and 1.6% to non-nucleoside reverse transcriptase inhibitors (NNRTIs). No significant difference was found in the prevalence of TDR, as compared with the results of another nationwide survey performed among ART naïve HIV-infected people in between 2004 and 2005, except in the 16-25 year-old group. In addition, four drug-resistant transmission clusters were identified in phylogenetic trees, accounting for 6.2% (9/145) of the individuals with TDR. Although the rate of TDR remained relatively low in the past 10 years in China, surveillance is still needed to monitor the trend of TDR and to optimize the first-line regimens.


Transcriptome analysis of xa5-mediated resistance to bacterial leaf streak in rice (Oryza sativa L.).

  • Xiaofang Xie‎ et al.
  • Scientific reports‎
  • 2020‎

Bacterial leaf steak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a devastating disease in rice production. The resistance to BLS in rice is a quantitatively inherited trait, of which the molecular mechanism is still unclear. It has been proved that xa5, a recessive bacterial blast resistance gene, is the most possible candidate gene of the QTL qBlsr5a for BLS resistance. To study the molecular mechanism of xa5 function in BLS resistance, we created transgenic lines with RNAi of Xa5 (LOC_Os05g01710) and used RNA-seq to analyze the transcriptomes of a Xa5-RNAi line and the wild-type line at 9 h after inoculation with Xoc, with the mock inoculation as control. We found that Xa5-RNAi could (1) increase the resistance to BLS as expected from xa5; (2) alter (mainly up-regulate) the expression of hundreds of genes, most of which were related to disease resistance; and (3) greatly enhance the response of thousands of genes to Xoc infection, especially of the genes involved in cell death pathways. The results suggest that xa5 is the cause of BLS-resistance of QTL qBlsr5a and it displays BLS resistance effect probably mainly because of the enhanced response of the cell death-related genes to Xoc infection.


Drug resistance and epidemiology characteristics of multidrug-resistant tuberculosis patients in 17 provinces of China.

  • Zhenhui Lu‎ et al.
  • PloS one‎
  • 2019‎

As China is one of high MDR-TB burden countries, it is important to determine the drug resistant pattern and clinical characteristics of multidrug resistant tuberculosis (MDR-TB). We conducted a comprehensive and nationwide study on MDR-TB in 17 provinces for the period from June 2009 to June 2015, and a total of 1154 cases of MDR-TB were finally investigated. The study sought to assess the clinical features and contrast drug susceptibility profiles of MDR-TB patients in China. Cavitary disease, young age, and long duration of TB disease among MDR-TB patients were important predictors. A high resistance proportion of first-line drugs was observed in Beijing, Shanghai and Tianjin. Resistant proportions of second-line anti-TB drugs in western region for amikacin, aminosalicylic acid, and levofloxacin were higher than eastern and central regions. High levels of drug resistance were seen in earlier cases (before 2011) and outpatients. We found high levels of resistance to 1st- and 2nd-line drugs in all settings, with considerable variabilities in terms of different Directly Observed Treatment Short Course (DOTS) programme, level of economic development(eastern, central and western regions) and patient source (inpatients and outpatients). Timely drug susceptibility testing (DST) and effective management are necessary to ensure an early detection of MDR-TB and its proper treatment.


Apurinic endonuclease 1 promotes the cisplatin resistance of lung cancer cells by inducing Parkin‑mediated mitophagy.

  • Zheng Li‎ et al.
  • Oncology reports‎
  • 2019‎

Platinum‑containing doublet chemotherapy is the cornerstone of lung cancer treatment; however, cisplatin resistance is a major obstacle in the treatment of lung cancer. However, the mechanism underlying this resistance has not been fully elucidated. Previous studies have shown that serum apurinic/apyrimidinic endonuclease 1 (APE1) levels in patients with NSCLC are inversely associated with progression‑free survival after platinum‑containing doublet chemotherapy, and can serve as a biomarker for predicting disease prognosis and treatment efficacy. The present study was designed to investigate the role played by APE1 in the resistance of lung cancer to cisplatin. The levels of mitochondrial apurinic endonuclease 1 (m‑APE1) and total APE1 (t‑APE1) protein in a cisplatin‑resistant A549 cell line (A549/DDP) and cisplatin‑sensitive A549 cells were analyzed by western blotting. Mitochondrial membrane potential was detected by using the JC‑1 staining method. The cisplatin‑resistance of APE1‑overexpressing A549 cells and APE1‑silenced A549/DDP cells was assessed by cell apoptosis and colony formation assays. The results revealed that cisplatin‑resistant A549 cells contained high levels of APE1, and exhibited elevated levels of autophagy. The levels of m‑APE1 and t‑APE1 protein were increased in the A549/DDP cells when compared with these levels in the A549 cells. Overexpression of APE1 and Mia40 enhanced the cisplatin resistance and autophagy of the A549 cells. APE1 knockdown restored the cisplatin sensitivity and reduced the levels of LC3II and Parkin in the A549/DDP cells, but promoted the release of cytochrome c. Furthermore, Parkin silencing or treatment with 3‑methyladenine (3‑MA, an autophagy inhibitor) promoted the apoptosis of APE1‑overexpressing A549 cells, indicating that Parkin‑mediated mitophagy plays an important role in the APE1‑induced cisplatin resistance of A549 cells. In conclusion, APE1 promotes the cisplatin resistance of lung cancer cells by inducing Parkin‑mediated mitophagy.


Discovery of BrATG6 and its potential role in Brassica rapa L. resistance to infection by Plasmodiophora brassicae.

  • Jing Zhang‎ et al.
  • Gene‎
  • 2021‎

Clubroot disease, caused by Plasmodiophora brassicae infection, occurs in cruciferous vegetable crops in many areas of the world, sometimes leading to yield loss. In this study, a differentially expressed protein (0305), was found between control and clubroot-diseased Chinese cabbage (Brassica rapa L.) roots through two-dimensional electrophoresis. Mass spectrometry analysis showed that Bra003466 was highly matched to protein 0305. Because the sequence of Bra003466 had 89% percent identity with ATG6 of Arabidopsis thaliana and other Brassica, the gene was named as BrATG6. However, 790 bp sequences were mismatched with the cDNA sequence of the Bra003466 gene from the Brassica database. In this study, we cloned the cDNA of Bra003466 and found the BrATG6 was highly expressed in roots among all organs. When plants were inoculated with P. brassicae Woronin, the expression of BrATG6 was significantly increased in infected roots of Chinese cabbage. This result was verified by reverse transcription-qPCR and in situ hybridization. Examination of disease resistance showed that, compared with wild type plants, A. thaliana ATG6 deletion mutants were more easily infected by P. brassicae than WT. This shows that BrATG6 may play a potential role in the resistance of B. rapa to P. brassicae infection.


TLR2, TLR4, and NLRP3 mediated the balance between host immune-driven resistance and tolerance in Staphylococcus aureus-infected mice.

  • Zhiguo Gong‎ et al.
  • Microbial pathogenesis‎
  • 2022‎

Staphylococcus aureus (S. aureus) is a gram-positive pathogen that can cause infectious diseases in mammals. S. aureus-induced host innate immune responses have a relationship with Toll-like receptor 2 (TLR2), TLR4, and Nod-like receptor pyrin domain-containing protein 3 (NLRP3). However, the detailed roles of TLR2, TLR4, and NLRP3 in regulating the host inflammatory response to S. aureus infection remain unclear. Our data indicated that the S. aureus-induced mortality was aggravated by deficiency of TLR2, TLR4, and NLRP3 in mice. In the subsequent experiment, we found that during S. aureus infection, the roles of TLR2, TLR4, and NLRP3 seemed to be different at multiple timepoints. The deficiency of TLR2, TLR4, or NLRP3 attenuated the expression of High-mobility group box protein 1 (HMGB1) and Hyaluronic acid-binding protein 2 (HABP2), which is accompanied by decreased proinflammatory cytokine (TNF-α), chemokine (RANTES), and anti-inflammatory cytokine (IL-10) production in lungs and serum at 3 h and 6 h post-infection. However, with S. aureus infection prolonged (24 h post-infection), the trend was diametrically opposite. The results showed that deficiency of TLR2, TLR4, or NLRP3 aggravated HABP2 and HMGB1 expression, which is accompanied by enhanced proinflammatory cytokine (TNF-α), chemokine (RANTES), and anti-inflammatory cytokine (IL-10) production in lungs and serum. These results were consistent with the data observed in S. aureus-infected bone marrow-derived macrophages (BMDMs). All these results suggested that during S. aureus infection, TLR2, TLR4, and NLRP3 has time-dependent effect in regulating the balance between immune-driven resistance and tolerance.


M6A associated TSUC7 inhibition contributed to Erlotinib resistance in lung adenocarcinoma through a notch signaling activation dependent way.

  • Kai Li‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2021‎

The small tyrosine kinase inhibitors (TKIs) subversively altered the lung cancer treatments, but patients will inevitably face the therapy resistance and disease recurrence. We aim to explore the potential roles of non-coding RNAs in sensitizing the TKIs effects.


The m6A regulator KIAA1429 stabilizes RAB27B mRNA and promotes the progression of chronic myeloid leukemia and resistance to targeted therapy.

  • Fangyi Yao‎ et al.
  • Genes & diseases‎
  • 2024‎

Chronic myeloid leukemia (CML) is a common adult leukemia. Both the acute phase of the disease and the adverse effects of anti-cancer treatments can lead to a poor prognosis. The N6-methyladenine (m6A) modification plays an important regulatory role in various physiological and pathological processes. KIAA1429 is a known m6A regulator, but the biological role of KIAA1429 in CML is unclear. In this study, we observed that the m6A levels and KIAA1429 expression were significantly up-regulated in patients with blast phase CML. Notably, KIAA1429 regulated the total level of RNA m6A modification in the CML cells and promoted the malignant biological behaviors of CML cells, including proliferation, migration, and imatinib resistance. Inhibiting KIAA1429 in CML cells reduced the stability of RAB27B mRNA through the m6A/YTHDF1 axis, consequently inhibiting CML proliferation and drug efflux, ultimately increasing the sensitivity of CML cells to imatinib. Moreover, the knockdown of RAB27B also inhibited the proliferation and drug resistance of CML cells and promoted their apoptosis. Rucaparib, a recently developed anti-cancer agent, suppressed the expression of KIAA1429 and CML cell proliferation and promoted cell apoptosis. Rucaparib also inhibited the tumorigenesis of CML cells in vivo. The combined use of rucaparib and imatinib enhanced the sensitivity of CML cells to imatinib. Our study provides evidence that elevated KIAA1429 expression in the blast phase of CML enhances the stability of RAB27B mRNA through the m6A/YTHDF1 axis to up-regulate RAB27B expression, thereby promoting CML progression. Rucaparib exerts inhibitory effects on KIAA1429 expression and thus reduces CML progression.


Blocking the autocrine regulatory loop of Gankyrin/STAT3/CCL24/CCR3 impairs the progression and pazopanib resistance of clear cell renal cell carcinoma.

  • Chao Wang‎ et al.
  • Cell death & disease‎
  • 2020‎

The poor prognosis of clear-cell renal cell carcinoma (ccRCC) patients is due to progression and targeted drug resistance, but the underlying molecular mechanisms need further elucidation. This study examined the biological function and related mechanisms of gankyrin in ccRCC based on the results of our previous study. To this end, in vitro functional experiments; in vivo models of subcutaneous tumor formation, lung metastasis, and orthotopic ccRCC; and antibody chip detection, co-IP, ChIP assays were performed to examine the biological role and molecular mechanisms of gankyrin in ccRCC. Two hundred fifty-six ccRCC patients were randomly divided into training and validation cohorts to examine the prognostic value of gankyrin and other markers through IHC and statistical analyses. We observed that the gankyrin-overexpressing ccRCC cell lines 786-O and 769-P exhibited increased proliferation, invasion, migration, tumorigenicity, and pazopanib resistance and decreased apoptosis, while gankyrin knockdown achieved the opposite results. Mechanistically, gankyrin recruited STAT3 via direct binding, and STAT3 binding to the CCL24 promoter promoted its expression. Reciprocally, an increase in autocrine CCL24 enhanced the expression of gankyrin and STAT3 activation via CCR3 in ccRCC, forming a positive autocrine-regulatory loop. Furthermore, in vivo experimental results revealed that blocking the positive loop through gankyrin knockdown or treatment with the CCR3 inhibitor SB328437 reversed the resistance to pazopanib and inhibited lung metastasis in ccRCC. Moreover, a positive correlation between gankyrin and STAT3 or CCL24 expression in ccRCC specimens was observed, and improved accuracy for ccRCC patient prognosis was achieved by combining gankyrin and STAT3 or CCL24 expression with existing clinical prognostic indicators, including the TNM stage and SSIGN score. In summary, targeting the gankyrin/STAT3/CCL24/CCR3 autocrine-regulatory loop may serve as a remedy for patients with advanced ccRCC, and combining gankyrin and STAT3 or CCL24 expression with the current clinical indicators better predicts ccRCC patient prognosis.


Tracking Cefoperazone/Sulbactam Resistance Development In vivo in A. baumannii Isolated from a Patient with Hospital-Acquired Pneumonia by Whole-Genome Sequencing.

  • Xiaofen Liu‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Cefoperazone/sulbactam has been shown to be efficacious for the treatment of infections caused by Acinetobacter baumannii; however, the mechanism underlying resistance to this synergistic combination is not well understood. In the present study, two A. baumannii isolates, AB1845 and AB2092, were isolated from a patient with hospital-acquired pneumonia before and after 20 days of cefoperazone/sulbactam therapy (2:1, 3 g every 8 h with a 1-h infusion). The minimum inhibitory concentration (MIC) of cefoperazone/sulbactam for AB1845 and AB2092 was 16/8 and 128/64 mg/L, respectively. Blood samples were collected on day 4 of the treatment to determine the concentration of cefoperazone and sulbactam. The pharmacokinetic/pharmacodynamic (PK/PD) indices (%T>MIC) were calculated to evaluate the dosage regimen and resistance development. The results showed that %T>MIC of cefoperazone and sulbactam was 100% and 34.5% for AB1845, and 0% and 0% for AB2092, respectively. Although there was no available PK/PD target for sulbactam, it was proposed that sulbactam should be administered at higher doses or for prolonged infusion times to achieve better efficacy. To investigate the mechanism of A. baumannii resistance to the cefoperazone/sulbactam combination in vivo, whole-genome sequencing of these two isolates was further performed. The sequencing results showed that 97.6% of the genome sequences were identical and 33 non-synonymous mutations were detected between AB1845 and AB2092. The only difference of these two isolates was showed in sequencing coverage comparison. There was a 6-kb amplified DNA fragment which was three times higher in AB2092, compared with AB1845. The amplified DNA fragment containing the bla OXA-23 gene on transposon Tn2009. Further quantitative real-time PCR results demonstrated that gene expression at the mRNA level of bla OXA-23 was >5 times higher in AB2092 than in AB1845. These results suggested that the bla OXA-23 gene had higher expression level in AB2092 via gene amplification and following transcription. Because gene amplification plays a critical role in antibiotic resistance in many bacteria, it is very likely that the bla OXA-23 amplification results in the development of cefoperazone/sulbactam resistance in vivo.


Altered motility of plaque-associated microglia in a model of Alzheimer's disease.

  • Stefka Gyoneva‎ et al.
  • Neuroscience‎
  • 2016‎

Alzheimer's disease (AD), the most common form of dementia in the elderly, is characterized by the presence of extracellular plaques composed of amyloid β (Aβ) peptides and intracellular tau aggregates. The plaques are surrounded by microglia, the brain's resident immune cells, which likely participate in the clearance of Aβ by phagocytosis. The microglia that are associated with plaques display an abnormal ameboid morphology and do not respond to tissue damage, in contrast to microglia in healthy brains. Here, we used time lapse confocal microscopy to perform a detailed real-time examination of microglial motility in acute hippocampal brain slices from the 5xFAD mouse model of AD, which was crossed to Cx3cr1(GFP/GFP) mice to achieve microglia-specific GFP expression for visualization. During baseline conditions, microglia around plaques appeared hypermotile, moving the processes that were pointing away from plaques at higher speed than microglia not associated with plaques. Yet, neither plaque-associated, nor plaque-free microglia were able to extend processes toward sites of modest mechanical damage. Application of the selective adenosine A2A receptor antagonist preladenant, which restores microglial response to cellular damage in a mouse model of Parkinson's disease, reduced the hypermotility of plaque-associated microglia, but did not restore motility toward damaged cells in slices from 5xFAD mice. Our results suggest that process hypermotility and resistance to A2A antagonism during response to tissue damage may represent unique functional phenotypes of plaque-associated microglia that impair their ability to function properly in the AD brain.


Novel Mutations in COL6A3 That Associated With Peters' Anomaly Caused Abnormal Intracellular Protein Retention and Decreased Cellular Resistance to Oxidative Stress.

  • Yue Li‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Peters' anomaly (PA) is a rare form of anterior segment dysgenesis characterized by central corneal opacity accompanied by iridocorneal or lenticulo-corneal adhesions. Although genetic mutations, particularly those affecting transcription factors that function in eye development, are known to cause PA, the etiology of this disease remains poorly understood. In this study, 23 patients with PA were recruited for panel sequencing. Four out of 23 patients were found to carry variants in known PA causal genes, PITX2 and PITX3. More importantly, two homozygous mutations (NM_057164: p.Val86Ala and p.Arg689Cys) in the COL6A3 gene (collagen type VI alpha-3 chain) that correlated with the phenotype of type I PA were identified, and then validated by following whole-exome sequencing. The expression profile of the COL6A3 gene in the cornea and the impact of the mutations on protein physiological processing and cellular function were further explored. It was shown that COL6A3 presented relatively high expression in the cornea. The mutant COL6A3 protein was relatively retained intracellularly, and its expression reduced cellular resistance to oxidative stress through an enhanced endoplasmic reticulum stress response. Taken together, our findings expanded the known genetic spectrum of PA, and provided evidence for the involvement of COL6A3 or collagen VI in ocular anterior segment development, thereby offering new insight for future investigations targeting PA.


SOCS1 function in BCR-ABL mediated myeloproliferative disease is dependent on the cytokine environment.

  • Özlem Demirel‎ et al.
  • PloS one‎
  • 2017‎

Treatment with tyrosine kinase inhibitors is the standard of care for Philadelphia chromosome positive leukemias. However the eradication of leukemia initiating cells remains a challenge. Circumstantial evidence suggests that the cytokine microenvironment may play a role in BCR-ABL mediated leukemogenesis and in imatinib resistance. Gene expression analyses of BCR-ABL positive ALL long-term cultured cells revealed strong reduction of SOCS mRNA expression after imatinib treatment, thereby demonstrating a strong inhibition of cytokine signaling. In this study we employed SOCS1-a strong inhibitor of cytokine signaling-as a tool to terminate external cytokine signals in BCR-ABL transformed cells in vitro and in vivo. In colony formation assays with primary bone marrow cells, expression of SOCS1 decreased colony numbers under pro-proliferative cytokines, while it conferred growth resistance to anti-proliferative cytokines. Importantly, co-expression of SOCS1 with BCR-ABL led to the development of a MPD phenotype with a prolonged disease latency compared to BCR-ABL alone in a murine bone marrow transplantation model. Interestingly, SOCS1 co-expression protected 20% of mice from MPD development. In summary, we conclude that under pro-proliferative cytokine stimulation at the onset of myeloproliferative diseases SOCS1 acts as a tumor suppressor, while under anti-proliferative conditions it exerts oncogenic function. Therefore SOCS1 can promote opposing functions depending on the cytokine environment.


Triglyceride-glucose index and coronary artery disease: a systematic review and meta-analysis of risk, severity, and prognosis.

  • Shichu Liang‎ et al.
  • Cardiovascular diabetology‎
  • 2023‎

The TyG index is an indicator of insulin resistance (IR), which is associated with the development and prognosis of cardiovascular disease. This study aimed to summarize the relationship between the TyG index and the risk, severity, and prognosis of coronary artery disease (CAD) by performing a systematic review and meta-analysis.


Engineering viable foot-and-mouth disease viruses with increased acid stability facilitate the development of improved vaccines.

  • Hong Yuan‎ et al.
  • Applied microbiology and biotechnology‎
  • 2020‎

Foot-and-mouth disease virus (FMDV), the most acid-unstable virus among picornaviruses, tends to disassemble into pentamers at pH values slightly below neutrality. However, the structural integrity of intact virion is one of the most important factors that influence the induction of a protective antibody response. Thus, improving the acid stability of FMDV is required for the efficacy of vaccine preparations. According to the previous studies, a single substitution or double amino acid substitutions (VP1 N17D, VP2 H145Y, VP2 D86H, VP3 H142D, VP3 H142G, and VP1 N17D + VP2 H145Y) in the capsid were introduced into the full-length infectious clone of type O FMDV vaccine strain O/HN/CHN/93 to develop seed FMDV with improved acid stability. After the transfection into BSR/T7 cells of constructed plasmids, substitution VP1 N17D or VP2 D86H resulted in viable and genetically stable FMDVs, respectively. However, substitution VP2 H145Y or VP1 N17D + VP2 H145Y showed reverse mutation and additional mutations, and substitution VP3 H141G or VP3 H141D prevented viral viability. We found that substitution VP1 N17D or VP2 D86H could confer increased acid resistance, alkali stability, and thermostability on FMDV O/HN/CHN/93, whereas substitution VP1 N17D was observed to lead to a decreased replication ability in BHK-21 cells and mildly impaired virulence in suckling mice. In contrast, substitution VP2 D86H had no negative effect on viral infectivity. These results indicated that the mutant rD86H carrying substitution VP2 D86H firstly reported by us could be more adequate for the development of inactivated FMD vaccines with enhanced acid stability.


Mycoplasma pneumoniae among Chinese Outpatient Children with Mild Respiratory Tract Infections during the Coronavirus Disease 2019 Pandemic.

  • Jiande Chen‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Mycoplasma pneumoniae is a common pathogen causing respiratory disease in children. We sought to investigate the epidemiology of M. pneumoniae among outpatient children with mild respiratory tract infections (RTIs) during the coronavirus disease 2019 (COVID-19) pandemic. Eligible patients were prospectively enrolled from January 2020 to June 2021. Throat swabs were tested for M. pneumoniae RNA. M. pneumoniae IgM was tested by a colloidal gold assay. Macrolide resistance and the effect of the COVID-19 countermeasures on M. pneumoniae prevalence were assessed. Symptom scores, treatments, and outcomes were evaluated. Eight hundred sixty-two eligible children at 15 centers in China were enrolled. M. pneumoniae was detected in 78 (9.0%) patients. Seasonally, M. pneumoniae peaked in the first spring and dropped dramatically to extremely low levels over time until the next summer. Decreases in COVID-19 prevalence were significantly associated with decreases in M. pneumoniae prevalence (r = 0.76, P = 0.001). The macrolide resistance rate was 7.7%. The overall sensitivity and specificity of the colloidal gold assay used in determining M. pneumoniae infection were 32.1% and 77.9%, respectively. No more benefits for improving the severity of symptoms and outcomes were observed in M. pneumoniae-infected patients treated with a macrolide than in those not treated with a macrolide during follow-up. The prevalences of M. pneumoniae and macrolide resistance in outpatient children with mild RTIs were at low levels in the early stage of the COVID-19 pandemic but may have rebounded recently. The colloidal gold assay for M. pneumoniae IgM may be not appropriate for diagnosis of M. pneumoniae infection. Macrolides should be used with caution among outpatients with mild RTIs. IMPORTANCE This is the first and largest prospective, multicenter, active, population-based surveillance study of the epidemiology of Mycoplasma pneumoniae among outpatient children with mild respiratory tract infections (RTIs) during the COVID-19 pandemic. Nationwide measures like strict face mask wearing and restrictions on population movement implemented to prevent the spread of COVID-19 might also effectively prevent the spread of M. pneumoniae. The prevalence of M. pneumoniae and the proportion of drug-resistant M. pneumoniae isolates in outpatient children with mild RTIs were at low levels in the early stage of the COVID-19 pandemic but may have rebounded recently. The colloidal gold assay for M. pneumoniae IgM may be not appropriate for screening and diagnosis of M. pneumoniae infection. Macrolides should be used with caution among outpatients with mild RTIs.


The root meristem growth factor BrRGF6 positively regulates Chinese cabbage to infection of clubroot disease caused by Plasmodiophora Brassicae.

  • Wenjie Ge‎ et al.
  • Horticulture research‎
  • 2023‎

Chinese cabbage has a high annual demand in China. However, clubroot disease caused by the infection of Plasmodiophora brassicae seriously affects its yield. Transcriptome analysis identified a root meristem growth factor 6 (BrRGF6) as significantly up-regulated in Chinese cabbage roots infected with Plasmodiophora brassicae. Quantitative reverse-transcription polymerase chain reaction and in situ hybridization analysis showed higher BrRGF6 expression in susceptible materials than in resistant materials. After Plasmodiophora brassicae infection, BrRGF6 expression was significantly up-regulated, especially in susceptible materials. Gene function analysis showed that the roots of Arabidopsis mutant rgf6 grew faster than the wild-type, and delayed the infection progress of Plasmodiophora brassicae. A Protein, nuclear transcription factor Y subunit C (BrNF-YC), was screened from yeast two-hybrid library of Chinese cabbage induced by Plasmodiophora brassicae, and verified to interact with BrRGF6 by yeast two-hybrid co-transfer. Yeast one-hybrid and β-Glucuronidase activity analysis showed that BrNF-YC could directly bind to and strongly activate the promoter of BrRGF6. Transgenic verification showed that BrRGF6 or BrNF-YC silenced Chinese cabbage significantly decreased the expression of BrRGF6, accelerated root development, and reduced incidence of clubroot disease. However, after overexpression of BrRGF6 or BrNF-YC, the phenotype showed a reverse trend. Therefore, BrRGF6 silencing accelerated root growth and enhanced resistance to clubroot disease, which was regulated by BrNF-YC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: