Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 6,396 papers

Association analysis of serotonin receptor 7 gene (HTR7) and risperidone response in Chinese schizophrenia patients.

  • Zhiyun Wei‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2009‎

Several lines of evidence suggest that the human 5-HT(7) receptor may be involved in the pharmacodynamics of risperidone and may influence clinical response of the drug. A pharmocogenetics study of this receptor may therefore be useful in developing individualized therapy. But few studies about it have been done. In this study, we genotyped ten single nucleotide polymorphisms (SNPs) distributed throughout the HTR7 gene and analyzed six of them for association with the reduction of Brief Psychiatric Rating Scale (BPRS) scores in drug-naive Chinese schizophrenia patients, following an eight-week period of risperidone monotherapy. The confounding effects of nongenetic factors were estimated and the baseline symptom score as well as the duration of illness were included as covariates for adjustment. No significant correlation of HTR7 with antipsychotic efficacy was detected in either genotype or haplotype analysis. These results demonstrate that variations in the HTR7 gene may not be good genetic markers for predicting the therapeutic efficacy of risperidone.


High efficient electrical stimulation of hippocampal slices with vertically aligned carbon nanofiber microbrush array.

  • Edward D de Asis‎ et al.
  • Biomedical microdevices‎
  • 2009‎

Long-term neuroprostheses for functional electrical stimulation must efficiently stimulate tissue without electrolyzing water and raising the extracellular pH to toxic levels. Comparison of the stimulation efficiency of tungsten wire electrodes (W wires), platinum microelectrode arrays (PtMEA), as-grown vertically aligned carbon nanofiber microbrush arrays (VACNF MBAs), and polypyrrole coated (PPy-coated) VACNF MBAs in eliciting field potentials in the hippocampus slice indicates that, at low stimulating voltages that preclude the electrolysis of water, only the PPy-coated VACNF MBA is able to stimulate the CA3 to CA1 pathway. Unlike the W wires, PtMEA, as-grown VACNF MBA, and the PPy-coated VACNF MBA elicit only excitatory postsynaptic potentials (EPSPs). Furthermore, the PPy-coated VACNF MBA evokes somatic action potentials in addition to EPSPs. These results highlight the PPy-coated VACNF's advantages in lower electrode impedance, ability to stimulate tissue through a biocompatible chloride flux, and stable vertical alignment in liquid that enables access to spatially confined regions of neuronal cells.


Brain anatomical network and intelligence.

  • Yonghui Li‎ et al.
  • PLoS computational biology‎
  • 2009‎

Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.


The role of geography in human adaptation.

  • Graham Coop‎ et al.
  • PLoS genetics‎
  • 2009‎

Various observations argue for a role of adaptation in recent human evolution, including results from genome-wide studies and analyses of selection signals at candidate genes. Here, we use genome-wide SNP data from the HapMap and CEPH-Human Genome Diversity Panel samples to study the geographic distributions of putatively selected alleles at a range of geographic scales. We find that the average allele frequency divergence is highly predictive of the most extreme F(ST) values across the whole genome. On a broad scale, the geographic distribution of putatively selected alleles almost invariably conforms to population clusters identified using randomly chosen genetic markers. Given this structure, there are surprisingly few fixed or nearly fixed differences between human populations. Among the nearly fixed differences that do exist, nearly all are due to fixation events that occurred outside of Africa, and most appear in East Asia. These patterns suggest that selection is often weak enough that neutral processes -- especially population history, migration, and drift -- exert powerful influences over the fate and geographic distribution of selected alleles.


MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling.

  • Jian Liang‎ et al.
  • The Journal of experimental medicine‎
  • 2010‎

The intensity and duration of macrophage-mediated inflammatory responses are controlled by proteins that modulate inflammatory signaling pathways. MCPIP1 (monocyte chemotactic protein-induced protein 1), a recently identified CCCH Zn finger-containing protein, plays an essential role in controlling macrophage-mediated inflammatory responses. However, its mechanism of action is poorly understood. In this study, we show that MCPIP1 negatively regulates c-Jun N-terminal kinase (JNK) and NF-κB activity by removing ubiquitin moieties from proteins, including TRAF2, TRAF3, and TRAF6. MCPIP1-deficient mice spontaneously developed fatal inflammatory syndrome. Macrophages and splenocytes from MCPIP1(-/-) mice showed elevated expression of inflammatory gene expression, increased JNK and IκB kinase activation, and increased polyubiquitination of TNF receptor-associated factors. In vitro assays directly demonstrated the deubiquitinating activity of purified MCPIP1. Sequence analysis together with serial mutagenesis defined a deubiquitinating enzyme domain and a ubiquitin association domain in MCPIP1. Our results indicate that MCPIP1 is a critical modulator of inflammatory signaling.


Interplant communication of tomato plants through underground common mycorrhizal networks.

  • Yuan Yuan Song‎ et al.
  • PloS one‎
  • 2010‎

Plants can defend themselves to pathogen and herbivore attack by responding to chemical signals that are emitted by attacked plants. It is well established that such signals can be transferred through the air. In theory, plants can also communicate with each other through underground common mycorrhizal networks (CMNs) that interconnect roots of multiple plants. However, until now research focused on plant-to-plant carbon nutrient movement and there is no evidence that defense signals can be exchanged through such mycorrhizal hyphal networks. Here, we show that CMNs mediate plant-plant communication between healthy plants and pathogen-infected tomato plants (Lycopersicon esculentum Mill.). After establishment of CMNs with the arbuscular mycorrhizal fungus Glomus mosseae between tomato plants, inoculation of 'donor' plants with the pathogen Alternaria solani led to increases in disease resistance and activities of the putative defensive enzymes, peroxidase, polyphenol oxidase, chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase and lipoxygenase in healthy neighbouring 'receiver' plants. The uninfected 'receiver' plants also activated six defence-related genes when CMNs connected 'donor' plants challenged with A. solani. This finding indicates that CMNs may function as a plant-plant underground communication conduit whereby disease resistance and induced defence signals can be transferred between the healthy and pathogen-infected neighbouring plants, suggesting that plants can 'eavesdrop' on defence signals from the pathogen-challenged neighbours through CMNs to activate defences before being attacked themselves.


A novel mutation in GJA8 causing congenital cataract-microcornea syndrome in a Chinese pedigree.

  • Shanshan Hu‎ et al.
  • Molecular vision‎
  • 2010‎

To identify the underlying genetic defect in a four-generation family of Chinese origin with autosomal dominant congenital cataract-microcornea syndrome (CCMC).


Expression of TLR4-MyD88 and NF-κB in the iris during endotoxin-induced uveitis.

  • Shang Li‎ et al.
  • Mediators of inflammation‎
  • 2010‎

To observe the expression of Toll-like receptor-4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor kappa B p65 (NF-κB p65) in iris tissue during endotoxin-induced uveitis (EIU) and evaluate the significance of these factors in uveitis.


Modeling non-uniformity in short-read rates in RNA-Seq data.

  • Jun Li‎ et al.
  • Genome biology‎
  • 2010‎

After mapping, RNA-Seq data can be summarized by a sequence of read counts commonly modeled as Poisson variables with constant rates along each transcript, which actually fit data poorly. We suggest using variable rates for different positions, and propose two models to predict these rates based on local sequences. These models explain more than 50% of the variations and can lead to improved estimates of gene and isoform expressions for both Illumina and Applied Biosystems data.


Revealing and avoiding bias in semantic similarity scores for protein pairs.

  • Jing Wang‎ et al.
  • BMC bioinformatics‎
  • 2010‎

Semantic similarity scores for protein pairs are widely applied in functional genomic researches for finding functional clusters of proteins, predicting protein functions and protein-protein interactions, and for identifying putative disease genes. However, because some proteins, such as those related to diseases, tend to be studied more intensively, annotations are likely to be biased, which may affect applications based on semantic similarity measures. Thus, it is necessary to evaluate the effects of the bias on semantic similarity scores between proteins and then find a method to avoid them.


Effective connectivities of cortical regions for top-down face processing: a dynamic causal modeling study.

  • Jun Li‎ et al.
  • Brain research‎
  • 2010‎

To study top-down face processing, the present study used an experimental paradigm in which participants detected non-existent faces in pure noise images. Conventional BOLD signal analysis identified three regions involved in this illusory face detection. These regions included the left orbitofrontal cortex (OFC) in addition to the right fusiform face area (FFA) and right occipital face area (OFA), both of which were previously known to be involved in both top-down and bottom-up processing of faces. We used Dynamic Causal Modeling (DCM) and Bayesian model selection to further analyze the data, revealing both intrinsic and modulatory effective connectivities among these three cortical regions. Specifically, our results support the claim that the orbitofrontal cortex plays a crucial role in the top-down processing of faces by regulating the activities of the occipital face area, and the occipital face area in turn detects the illusory face features in the visual stimuli and then provides this information to the fusiform face area for further analysis.


miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells.

  • Shui-Long Guo‎ et al.
  • International journal of biological sciences‎
  • 2011‎

Accumulating evidence has shown that miRNAs are aberrantly expressed in human gastric cancer and crucial to tumorigenesis. Herein, we identified the role of miR-148a in gastric cell proliferation. miR-148a knockdown inhibited cell proliferation in gastric cancer cell lines. Conversely, miR-148a overexpression promoted cell proliferation and cell cycle progression. p27, a key inhibitor of cell cycle, was verified as the target of miR-148a, indicating miR-148a might downregulate p27 expression to promote gastric cell proliferation. Moreover, we confirmed that miR-148a expression was frequently and dramatically downregulated in human advanced gastric cancer tissues, and observed a good inverse correlation between miR-148a and p27 expression in tumor samples. Thus, our results demonstrated that miR-148a downregulation might exert some sort of antagonistic function in cell proliferation, rather than promote cell proliferation in gastric cancer.


Centrobin-tubulin interaction is required for centriole elongation and stability.

  • Radhika Gudi‎ et al.
  • The Journal of cell biology‎
  • 2011‎

Centrobin is a daughter centriole protein that is essential for centrosome duplication. However, the molecular mechanism by which centrobin functions during centriole duplication remains undefined. In this study, we show that centrobin interacts with tubulin directly, and centrobin-tubulin interaction is pivotal for the function of centrobin during centriole duplication. We found that centrobin is recruited to the centriole biogenesis site via its interaction with tubulins during the early stage of centriole biogenesis, and its recruitment is dependent on hSAS-6 but not centrosomal P4.1-associated protein (CPAP) and CP110. The function of centrobin is also required for the elongation of centrioles, which is likely mediated by its interaction with tubulin. Furthermore, disruption of centrobin-tubulin interaction led to destabilization of existing centrioles and the preformed procentriole-like structures induced by CPAP expression, indicating that centrobin-tubulin interaction is critical for the stability of centrioles. Together, our study demonstrates that centrobin facilitates the elongation and stability of centrioles via its interaction with tubulins.


ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework.

  • Kunlin Zhang‎ et al.
  • Nucleic acids research‎
  • 2011‎

Genome-wide association study (GWAS) is widely utilized to identify genes involved in human complex disease or some other trait. One key challenge for GWAS data interpretation is to identify causal SNPs and provide profound evidence on how they affect the trait. Currently, researches are focusing on identification of candidate causal variants from the most significant SNPs of GWAS, while there is lack of support on biological mechanisms as represented by pathways. Although pathway-based analysis (PBA) has been designed to identify disease-related pathways by analyzing the full list of SNPs from GWAS, it does not emphasize on interpreting causal SNPs. To our knowledge, so far there is no web server available to solve the challenge for GWAS data interpretation within one analytical framework. ICSNPathway is developed to identify candidate causal SNPs and their corresponding candidate causal pathways from GWAS by integrating linkage disequilibrium (LD) analysis, functional SNP annotation and PBA. ICSNPathway provides a feasible solution to bridge the gap between GWAS and disease mechanism study by generating hypothesis of SNP → gene → pathway(s). The ICSNPathway server is freely available at http://icsnpathway.psych.ac.cn/.


Sphingosine kinase 1 regulates the Akt/FOXO3a/Bim pathway and contributes to apoptosis resistance in glioma cells.

  • Hongyu Guan‎ et al.
  • PloS one‎
  • 2011‎

The aim of this study was to investigate the mechanism through which Sphingosine kinase-1 (SPHK1) exerts its anti-apoptosis activity in glioma cancer cells. We here report that dysregulation of SPHK1 alters the sensitivity of glioma to apoptosis both in vitro and in vivo. Further mechanistic study examined the expression of Bcl-2 family members, including Bcl-2, Mcl-1, Bax and Bim, in SPHK1-overexpressing glioma cells and revealed that only pro-apoptotic Bim was downregulated by SPHK1. Moreover, the transcriptional level of Bim was also altered by SPHK1 in glioma cells. We next confirmed the correlation between SPHK1 and Bim expression in primary glioma specimens. Importantly, increasing SPHK1 expression in glioma cells markedly elevated Akt activity and phosphorylated inactivation of FOXO3a, which led to downregulation of Bim. A pharmacological approach showed that these effects of SPHK1 were dependent on phosphatidylinositol 3-kinase (PI3K). Furthermore, effects of SPHK1 on Akt/FOXO3a/Bim pathway could be reversed by SPHK1 specific RNA interference or SPHK1 inhibitor. Collectively, our results indicate that regulation of the Akt/FOXO3a/Bim pathway may be a novel mechanism by which SPHK1 protects glioma cells from apoptosis, thereby involved in glioma tumorigenesis.


Early-onset severe neuromuscular phenotype associated with compound heterozygosity for OPA1 mutations.

  • Christian P Schaaf‎ et al.
  • Molecular genetics and metabolism‎
  • 2011‎

Pathogenic mutations in the OPA1 gene are the most common identifiable cause of autosomal dominant optic atrophy (DOA), which is characterized by selective retinal ganglion cell loss, a distinctive pattern of temporal pallor of the optic nerve and a typical color vision deficit, with variable effects on visual acuity. Haploinsufficiency has been suggested as the major pathogenic mechanism for DOA. Here we present two siblings with severe ataxia, hypotonia, gastrointestinal dysmotility, dysphagia, and severe, early-onset optic atrophy who were found to be compound heterozygotes for two pathogenic OPA1 mutations. This example expands the clinical phenotype of OPA1-associated disorders and provides additional evidence for semi-dominant inheritance.


Utilization of targeted array comparative genomic hybridization, MitoMet, in prenatal diagnosis of metabolic disorders.

  • Megan L Landsverk‎ et al.
  • Molecular genetics and metabolism‎
  • 2011‎

Metabolic disorders are inborn errors that often present in the neonatal period with a devastating clinical course. If not treated promptly, these diseases can result in severe, irreversible disease or death. Determining the molecular defects in metabolic diseases is important in providing a definitive diagnosis for patient management. Therefore, prenatal diagnosis for families with known mutations causing metabolic disorders is crucial for timely intervention. Here we present three families in which standard Sanger sequencing failed to provide a definitive diagnosis, but the detection of genomic deletions by array comparative genomic hybridization (CGH) specifically targeted to mitochondrial and metabolic disease genes, MitoMet®, was fundamental in providing accurate prenatal diagnosis. In addition, to our knowledge, two deletions are the smallest detected by oligonucleotide array CGH reported for their respective genes, OTC and ARG1. These data highlight the importance of targeted array CGH in patients with suspected metabolic disorders and incomplete or negative sequencing results, as well as its emerging role in prenatal diagnosis.


In vitro study on apoptosis induced by strontium-89 in human breast carcinoma cell line.

  • Cheng Wang‎ et al.
  • Journal of biomedicine & biotechnology‎
  • 2011‎

Many radiopharmaceuticals used for medical diagnosis and therapy are beta emitters; however, the mechanism of the cell death caused by beta-irradiation is not well understood. The objective of this study was to investigate the apoptosis of human breast carcinoma MCF-7 cell lines induced by Strontium-89 (⁸⁹Sr) and its regulation and control mechanism. High-metastatic Breast Carcinoma MCF-7 cells were cultured in vitro using ⁸⁹Sr with different radioactive concentration. The inhibition rate of cell proliferation was measured by MTT color matching method. The cell cycle retardation, apoptosis conditions, mitochondrion transmembrane potential difference and Fas expression were tested and analyzed. The genes P53 and bcl-2 expressions was also analyzed using immunity histochemical analysis. After being induced by ⁸⁹Sr with various of radioactive concentration, it was found that the inhibition of cell proliferation of MCF-7 cells was obviously, the retardation of cell cycle occurred mainly in G2-M. It was also found that the obvious apoptosis occurred after being induced by ⁸⁹Sr, the highest apoptosis rate reached 46.28%. The expressions of Fas acceptor and P53 gene increased, while bcl-2 gene expression decreasesd. These findings demonstrate that in the ranges of a certain radioactive concentration, the inhibition rate of MCF-7 cell proliferation and retardation of cell cycle had positive correlation with the concentration of ⁸⁹Sr. And the mitochondrion transmembrane potential decrease would induce the apoptosis of MCF-7 cell notably, which were controlled by P53 and bcl-2 genes, involved with the Fas acceptor.


A dominant X-linked QTL regulating pubertal timing in mice found by whole genome scanning and modified interval-specific congenic strain analysis.

  • Wangsheng Zhu‎ et al.
  • PloS one‎
  • 2008‎

Pubertal timing in mammals is triggered by reactivation of the hypothalamic-pituitary-gonadal (HPG) axis and modulated by both genetic and environmental factors. Strain-dependent differences in vaginal opening among inbred mouse strains suggest that genetic background contribute significantly to the puberty timing, although the exact mechanism remains unknown.


On the origin of Tibetans and their genetic basis in adapting high-altitude environments.

  • Binbin Wang‎ et al.
  • PloS one‎
  • 2011‎

Since their arrival in the Tibetan Plateau during the Neolithic Age, Tibetans have been well-adapted to extreme environmental conditions and possess genetic variation that reflect their living environment and migratory history. To investigate the origin of Tibetans and the genetic basis of adaptation in a rigorous environment, we genotyped 30 Tibetan individuals with more than one million SNP markers. Our findings suggested that Tibetans, together with the Yi people, were descendants of Tibeto-Burmans who diverged from ancient settlers of East Asia. The valleys of the Hengduan Mountain range may be a major migration route. We also identified a set of positively-selected genes that belong to functional classes of the embryonic, female gonad, and blood vessel developments, as well as response to hypoxia. Most of these genes were highly correlated with population-specific and beneficial phenotypes, such as high infant survival rate and the absence of chronic mountain sickness.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: