Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 75 papers

Prenylated Diphenyl Ethers from the Marine Algal-Derived Endophytic Fungus Aspergillus tennesseensis.

  • Zhao-Xia Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Considerable attention has been paid to marine derived endophytic fungi, owing to their capacity to produce novel secondary metabolites with potent bioactivities. In this study, two new compounds with a prenylated diphenyl ether structure-diorcinol L (1) and (R)-diorcinol B (2)-were isolated from the marine algal-derived endophytic fungus Aspergillus tennesseensis, along with seven known compounds: (S)-diorcinol B (3), 9-acetyldiorcinol B (4), diorcinol C (5), diorcinol D (6), diorcinol E (7), diorcinol J (8), and a dihydrobenzofuran derivative 9. Their structures were elucidated by extensive NMR spectroscopy studies. Compound 2 represents the first example of an R-configuration in the prenylated moiety. All these isolated compounds were examined for antimicrobial and cytotoxic activities. Compounds 1⁻9 exhibited antimicrobial activities against some human- and plant-pathogenic microbes with MIC values ranging from 2 to 64 μg/mL. Moreover, compound 9 displayed considerable inhibitory activity against the THP-1 cell line in vitro, with an IC50 value of 7.0 μg/mL.


Insecticidal Activities of Chloramphenicol Derivatives Isolated from a Marine Alga-Derived Endophytic Fungus, Acremonium vitellinum, against the Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae).

  • Dan Chen‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

A great deal of attention has been focused on the secondary metabolites produced by marine endophytic fungi, which can be better alternatives to chemicals, such as biopesticides, for control of polyphagous pests. On the basis of its novel biocontrol attributes, chemical investigation of a marine alga-derived endophytic fungus, Acremonium vitellinum, resulted in the isolation of three chloramphenicol derivatives (compounds 1⁻3). Their chemical structures were elucidated by detailed analysis of their nuclear magnetic resonance spectra, high-resolution electrospray ionization mass spectrometry, and by comparison with the data available in the literature. In this paper, compound 2 was firstly reported as the natural origin of these fungal secondary metabolites. The insecticidal activities of compounds 1⁻3 against the cotton bollworm, Helicoverpa armigera, were evaluated. The natural compound 2 presented considerable activity against H. armigera, with an LC50 value of 0.56 ± 0.03 mg/mL (compared to matrine with an LC50 value of 0.24 ± 0.01 mg/mL). Transcriptome sequencing was used to evaluate the molecular mechanism of the insecticidal activities. The results presented in this study should be useful for developing compound 2 as a novel, ecofriendly and safe biopesticide.


Norditerpenoids from Flickingeria fimbriata and their inhibitory activities on nitric oxide and tumor necrosis factor-α production in mouse macrophages.

  • Jin-Long Chen‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2014‎

Bioassay-guided fractionation of the ethanolic extract of the leaves of Flickingeria flimbriata led to the isolation of two new degraded diterpenoids 1 and 2, a new ent-pimarane type diterpenoid 3, and four known steroids 4-7. The structures of 1-3 were elucidated by spectroscopic analysis, and their absolute configurations were determined by chemical methods, TDDFT quantum chemical calculations of ECD spectra, and CD exiton chirality method. Compounds 1 and 2, named flickinflimilins A and B, possess a rare 15,16-dinor-ent-pimarane skeleton. Compounds 1-7 were screened for the inhibitory activity against lipopolysaccharide (LPS)-induced NO and TNF-α production in RAW264.7 cells. Compounds 1-3 exhibited potent inhibitory activities, with IC50 values of less than 10 µM.


Sulforaphane Analogues with Heterocyclic Moieties: Syntheses and Inhibitory Activities against Cancer Cell Lines.

  • Ye-Hui Shi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

Recent studies have shown that sulforaphane (SFN) selectively inhibits the growth of ALDH⁺ breast cancer stem-like cells.Herein, a series of SFN analogues were synthesized and evaluated against breast cancer cell lines MCF-7 and SUM-159, and the leukemia stem cell-like cell line KG-1a. These SFN analogues were characterized by the replacement of the methyl group with heterocyclic moieties, and the replacement of the sulfoxide group with sulfide or sulfone. A growth inhibitory assay indicated that the tetrazole analogs 3d, 8d and 9d were significantly more potent than SFN against the three cancer cell lines. Compound 14c, the water soluble derivative of tetrazole sulfide 3d, demonstrated higher potency against KG-1a cell line than 3d. SFN, 3d and 14c significantly induced the activation of caspase-3, and reduced the ALDH⁺ subpopulation in the SUM159 cell line, while the marketed drug doxrubicin(DOX) increased the ALDH⁺ subpopulation.


Antiplatelet Activity of Acylphloroglucinol Derivatives Isolated from Dryopteris crassirhizoma.

  • Nam-Hui Yim‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Platelets are an important component of the initial response to vascular endothelial injury; however, platelet dysfunction induces the acute clinical symptoms of thrombotic disorders, which trigger severe cardiovascular diseases such as myocardial infarction, ischemia, and stroke. In this study, we investigated the Dryopteris crassirhizoma's antiplatelet activity. A water extract of D. crassirhizoma (WDC) was partitioned into dichloromethane (DCM), ethyl acetate, n-butyl alcohol, and water. Among these four fractions, the DCM fraction potently inhibited the collagen-stimulated platelet aggregation in a concentration-dependent manner. From this fraction, five different acylphloroglucinol compounds and one flavonoid were isolated by activity-guided column chromatography. They were identified by comparing their mass, 1H-, and 13C-NMR spectral data with those reported in the literature. Quantifying the six compounds in WDC and its DCM fraction by high-performance liquid chromatography (HPLC) revealed that butyryl-3-methylphloroglucinol (compound 4) was the most abundant in these samples. Additionally, butyryl-3-methylphloroglucinol showed the strongest inhibitory activity in the collagen- and arachidonic acid (AA)-induced platelet aggregation, with inhibition ratios of 92.36% and 89.51% in the collagen and AA-induced platelet aggregation, respectively, without cytotoxicity. On the active concentrations, butyryl-3-methylphloroglucinol significantly suppressed the convulxin-induced platelet activation. Regarding the structure-activity relationships for the five acylphloroglucinol compounds, our results demonstrated that the functional butanonyl, methoxy, and hydroxy groups in butyryl-3-methylphloroglucinol play important roles in antiplatelet activity. The findings indicate that acylphloroglucinols, including butyryl-3-methylphloroglucinol from D. crassirhizom, possess an antiplatelet activity, supporting the use of this species for antiplatelet remedies.


Synthesis, Antibacterial Activities, Mode of Action and Acute Toxicity Studies of New Oxazolidinone-Fluoroquinolone Hybrids.

  • Lili Liu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

To combat bacterial resistance, a series of new oxazolidinone-fluoroquinolone hybrids have been synthesized and characterized. All synthetic hybrids were preliminarily evaluated for their in vitro antibacterial activities against 6 standard strains and 3 clinical isolates. The majority of hybrids displayed excellent activities against Gram-positive bacteria, but limited activities against Gram-negative bacteria. Hybrids OBP-4 and OBP-5 were found to be the most promising compounds. Further, in vitro antibacterial activities, mode of action and acute toxicity in mice of hybrids OBP-4 and OBP-5 were investigated. Hybrids OBP-4 and OBP-5 exhibited potent activities against Gram-positive bacteria, including drug-resistant strains. Correspondingly, studies on the mode of action of hybrids OBP-4 and OBP-5 indicated a strong inhibitory activity on protein synthesis by binding the active site of 50S subunit, but a weak inhibitory action on DNA synthesis. In addition, LD50 values of hybrids OBP-4 and OBP-5 in the acute oral toxicity were larger than 2000 mg/kg, suggesting a good safety profile.


Physicochemical Properties of Starches in Proso (Non-Waxy and Waxy) and Foxtail Millets (Non-Waxy and Waxy).

  • Qinghua Yang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Proso and foxtail millets are widely cultivated due to their excellent resistance to biotic and abiotic stresses and high nutritional value. Starch is the most important component of millet kernels. Starches with different amylose contents have different physicochemical properties. In this study, starches in proso (non-waxy and waxy) and foxtail millets (non-waxy and waxy) were isolated and investigated. All the starch granules had regular polygonal round shapes and exhibited typical "Maltese crosses". These four starches all showed bimodal size distribution. The waxy proso and foxtail millets had higher weight-average molar mass and branching degree and lower average chain length of amylopectin. These four starches all presented A-type crystallinity; however, the relative crystallinity of waxy proso and foxtail millets was higher. The two waxy millets had higher onset temperature, peak temperature, conclusion temperature, and gelatinization enthalpy. However, the two non-waxy millets had higher setback viscosity, peak time, and pasting temperature. The significantly different physicochemical properties of waxy and non-waxy millet starches resulted in their different functional properties.


Trichothecin Inhibits Cancer-Related Features in Colorectal Cancer Development by Targeting STAT3.

  • Xin Qi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that contributes to cancer progression through multiple processes of cancer development, which makes it an attractive target for cancer therapy. The IL-6/STAT3 pathway is associated with an advanced stage in colorectal cancer patients. In this study, we identified trichothecin (TCN) as a novel STAT3 inhibitor. TCN was found to bind to the SH2 domain of STAT3 and inhibit STAT3 activation and dimerization, thereby blocking STAT3 nuclear translocation and transcriptional activity. TCN did not affect phosphorylation levels of STAT1. TCN significantly inhibited cell growth, arrested cell cycle at the G0/G1 phase, and induced apoptosis in HCT 116 cells. In addition, the capacities of colony formation, migration, and invasion of HCT 116 cells were impaired upon exposure to TCN with or without IL-6 stimulation. In addition, TCN treatment abolished the tube formation of HUVEC cells in vitro. Taken together, these results highlight that TCN inhibits various cancer-related features in colorectal cancer development in vitro by targeting STAT3, indicating that TCN is a promising STAT3 inhibitor that deserves further exploration in the future.


Exogenous Melatonin Modulates the Physiological and Biochemical Mechanisms of Drought Tolerance in Tartary Buckwheat (Fagopyrum tataricum (L.) Gaertn).

  • Md Shakhawat Hossain‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Tartary buckwheat is one of the nutritious minor cereals and is grown in high-cold mountainous areas of arid and semi-arid zones where drought is a common phenomenon, potentially reducing the growth and yield. Melatonin, which is an amphiphilic low molecular weight compound, has been proven to exert significant effects in plants, under abiotic stresses, but its role in the Tartary buckwheat under drought stress remains unexplored. We evaluated the influence of melatonin supplementation on plant morphology and different physiological activities, to enhance tolerance to posed drought stress by scavenging reactive oxygen species (ROS) and alleviating lipid peroxidation. Drought stress decreased the plant growth and biomass production compared to the control. Drought also decreased Chl a, b, and the Fv/Fm ratio by 54%, 70%, and 8%, respectively, which was associated with the disorganized stomatal properties. Under drought stress, H2O2, O2•-, and malondialdehyde (MDA) contents increased by 2.30, 2.43, and 2.22-folds, respectively, which caused oxidative stress. In contrast, proline and soluble sugar content were increased by 84% and 39%, respectively. However, exogenous melatonin (100 µM) could improve plant growth by preventing ROS-induced oxidative damage by increasing photosynthesis, enzymatic antioxidants (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase), secondary metabolites like phenylalanine ammonialyase, phenolics, and flavonoids, total antioxidant scavenging (free radical DPPH scavenging), and maintaining relative water content and osmoregulation substances under water stress. Therefore, our study suggested that exogenous melatonin could accelerate drought resistance by enhancing photosynthesis and antioxidant defense in Tartary buckwheat plants.


Rosmarinic Acid as a Candidate in a Phenotypic Profiling Cardio-/Cytotoxicity Cell Model Induced by Doxorubicin.

  • Qiao Zhang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Advances in cancer treatment have led to significant improvements in long-term survival in many types of cancer, but heart dysfunction and heart failure, associated with cancer treatment, have also increased. Anthracyclines are the main cause of this type of cardiotoxicity. In this study, we describe a combined experimental and cell morphology analysis approach for the high-throughput measurement and analysis of a cardiomyocyte cell profile, using partial least square linear discriminant analysis (PLS-LDA) as the pattern recognition algorithm. When screening a small-scale natural compound library, rosmarinic acid (RosA), as a candidate drug, showed the same cardioprotective effect as the positive control. We investigated the protective mechanism of RosA on a human cardiomyocyte cell line (AC16) and human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs). We showed that RosA pretreatment suppressed doxorubicin (Dox)-induced cell apoptosis and decreased the activity of caspase-9. RosA promotes the expression of Heme oxygenase-1 (HO-1) and reduces the production of reactive oxygen species (Ros), which is induced by Dox. Meanwhile, it can also promote the expression of cardiac-development-related protein, including histone deacetylase 1 (HDAC1), GATA binding protein 4 (GATA4) and troponin I3, cardiac type (CTnI). Collectively, our data support the notion that RosA is a protective agent in hiPSC-CMs and has the potential for therapeutic use in the treatment of cancer therapy-related cardiac dysfunction and heart failure.


Protective Effect of Flavonoids from Ohwia caudata against Influenza a Virus Infection.

  • Eun Bin Kwon‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

To identify new potential anti-influenza compounds, we isolated six flavonoids, 2'-hydroxyl yokovanol (1), 2'-hydroxyl neophellamuretin (2), yokovanol (3), swertisin (4), spinosin (5), and 7-methyl-apigenin-6-C-β-glucopyranosyl 2″-O-β-d-xylopyranoside (6) from MeOH extractions of Ohwia caudata. We screened these compounds for antiviral activity using green fluorescent protein (GFP)-expressing H1N1 (A/PR/8/34) influenza A-infected RAW 264.7 cells. Compounds 1 and 3 exhibited significant inhibitory effects against influenza A viral infection in co-treatment conditions. In addition, compounds 1 and 3 reduced viral protein levels, including M1, M2, HA, and neuraminidase (NA), and suppressed neuraminidase (NA) activity in RAW 264.7 cells. These findings demonstrated that 2'-hydroxyl yokovanol and yokovanol, isolated from O. caudate, inhibit influenza A virus by suppressing NA activity. The moderate inhibitory activities of these flavonoids against influenza A virus suggest that they may be developed as novel anti-influenza drugs in the future.


Immune Checkpoint PD-1/PD-L1 CTLA-4/CD80 are Blocked by Rhus verniciflua Stokes and its Active Compounds.

  • Wei Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

The bark of Rhus verniciflua Stokes (RVS) has been used to treat cancer in Korean herbal medicine. When we screened for PD-1 and CTLA-4 immune checkpoint inhibitors (PD-1/PD-L1 CTLA-4/CD80) from around 800 herbal extracts using competitive Enzyme-Linked Immunosorbent Assay (ELISA), we found that RVS blocked both the PD-1/PD-L1 and the CTLA-4/CD80 interactions. To identify the active compounds from RVS, we performed bioactivity-guided fractionation, and the ethyl acetate (EtOAc) fraction of RVS proved to be the most effective at blocking the PD-1/PD-L1 and CTLA-4/CD80 interactions. In addition, we isolated and identified 20 major compounds in the EtOAc fraction of RVS and then examined the blocking effects of these 20 compounds on PD-1/PD-L1 and CTLA-4/CD80. Among them, four compounds [eriodictyol (7) > fisetin (9) > quercetin (18) > liquiritigenin (13)] blocked the interaction of PD-1/PD-L1 on competitive ELISA. In addition, four different compounds [protocatechuic acid (2) > caffeic acid (19) > taxifolin (5) > butin (6)] blocked the interaction of CTLA-4/CD80. Our findings suggest that RVS and its components could be used as a potential immune checkpoint inhibitor blockade and could be developed for immuno-oncological therapeutics.


Oxymatrine Alleviates Collagen-Induced Arthritis in Mice by Regulating the Immune Balance of T Cells.

  • Gan Cao‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by systemic immunity and autoimmune disorders. We have previously found that oxymatrine (OMT), a natural alkaloid, can alleviate rheumatoid arthritis without knowing whether OMT can alleviate rheumatoid arthritis through gut microbiota. In this study, we found that OMT can alleviate collagen-induced arthritis in mice and reconstruct the immune balance of Th1/Th2, Treg/Th17, and Tfr/Tfh cells. Colon transcriptome gene enrichment analysis indicated that oxymatrine may alleviate collagen induced arthritis in mice through immune system process pathway. Furthermore, OMT significantly altered the gut microbiota variety, changed the composition of microbial colonies, and reshaped the gut microbiota of collagen-induced arthritis (CIA) mice, which may participate in the regulation of the balance of Th1/Th2, Treg/Th17, and Tfr/Tfh cells to alleviate collagen-induced arthritis in mice.


Synthesis of Novel 2-(Pyridin-2-yl) Pyrimidine Derivatives and Study of Their Anti-Fibrosis Activity.

  • Yi-Fei Gu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

A pyrimidine moiety exhibiting a wide range of pharmacological activities has been employed in the design of privileged structures in medicinal chemistry. To prepare libraries of novel heterocyclic compounds with potential biological activities, a series of novel 2-(pyridin-2-yl) pyrimidine derivatives were designed, synthesized and their biological activities were evaluated against immortalized rat hepatic stellate cells (HSC-T6). Fourteen compounds were found to present better anti-fibrotic activities than Pirfenidone and Bipy55'DC. Among them, compounds ethyl 6-(5-(p-tolylcarbamoyl)pyrimidin-2-yl)nicotinate (12m) and ethyl 6-(5-((3,4-difluorophenyl)carbamoyl)pyrimidin-2-yl)nicotinate (12q) show the best activities with IC50 values of 45.69 μM and 45.81 μM, respectively. Furthermore, the study of anti-fibrosis activity was evaluated by Picro-Sirius red staining, hydroxyproline assay and ELISA detection of Collagen type I alpha 1 (COL1A1) protein expression. Our study showed that compounds 12m and 12q effectively inhibited the expression of collagen, and the content of hydroxyproline in cell culture medium in vitro, indicating that compounds 12m and 12q might be developed the novel anti-fibrotic drugs.


Assessment of In Vitro Digestive Behavior of Lactic-Acid-Bacteria Fermented Soy Proteins: A Study Comparing Colloidal Solutions and Curds.

  • Yaqiong Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

This study investigated the effect of lactic-acid-bacteria fermentation on the microstructure and gastrointestinal digestibility of soy proteins using a digestomics approach. Fermented soy protein isolates (FSPIs) under varied fermentation-terminal pH demonstrated a colloidal solution (FSPI-7.0/6.0) or yogurt-like curd (FSPI-5.0/4.0) state. Cryo-electron microscopy figures demonstrated the loosely stacked layer of FSPI-7.0/6.0 samples, whereas a denser gel network was observed for FSPI-5.0/4.0 samples. Molecular interactions shifted from dominant ionic bonds to hydrophobic forces and disulfide bonds. The gastric/intestinal digestion demonstrated that the curd samples afforded a significantly low particle size and high-soluble protein and peptide contents in the medium and late digestive phases. A peptidomics study showed that the FSPI-6.0 digestate at early intestinal digestion had a high peptidome abundance, whereas FSPI curd digestates (FSPI-5.0/4.0) elicited a postponed but more extensive promotion during medium and late digestion. Glycinin G2/G4 and β-conglycinin α/α' subunits were the major subunits promoted by FSPI-curds. The spatial structures of glycinin G2 and β-conglycinin α subunits demonstrated variations located in seven regions. Glycinin G2 region 6 (A349-K356) and β-conglycinin α subunit region 7 (E556-E575), which were located at the interior of the 3D structure, were the key regions contributing to discrepancies at the late stage.


Theoretical Studies on the Binding Mode and Reaction Mechanism of TLP Hydrolase kpHIUH.

  • Xixi Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

In this work, we have investigated the binding conformations of the substrate in the active site of 5-HIU hydrolase kpHIUH and its catalytic hydrolysis mechanism. Docking calculations revealed that the substrate adopts a conformation in the active site with its molecular plane laying parallel to the binding interface of the protein dimer of kpHIUH, in which His7 and His92 are located adjacent to the hydrolysis site C6 and have hydrogen bond interactions with the lytic water. Based on this binding conformation, density functional theory calculations indicated that the optimal catalytic mechanism consists of two stages: (1) the lytic water molecule is deprotonated by His92 and carries out nucleophilic attack on C6=O of 5-HIU, resulting in an oxyanion intermediate; (2) by accepting a proton transferred from His92, C6-N5 bond is cleaved to completes the catalytic cycle. The roles of His7, His92, Ser108 and Arg49 in the catalytic reaction were revealed and discussed in detail.


Genome-Wide Identification and Comparative Analysis of the 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR) Gene Family in Gossypium.

  • Wei Liu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Terpenes are the largest and most diverse class of secondary metabolites in plants and play a very important role in plant adaptation to environment. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a rate-limiting enzyme in the process of terpene biosynthesis in the cytosol. Previous study found the HMGR genes underwent gene expansion in Gossypium raimondii, but the characteristics and evolution of the HMGR gene family in Gossypium genus are unclear. In this study, genome-wide identification and comparative study of HMGR gene family were carried out in three Gossypium species with genome sequences, i.e., G. raimondii, Gossypium arboreum, and Gossypium hirsutum. In total, nine, nine and 18 HMGR genes were identified in G. raimondii, G. arboreum, and G. hirsutum, respectively. The results indicated that the HMGR genes underwent gene expansion and a unique gene cluster containing four HMGR genes was found in all the three Gossypium species. The phylogenetic analysis suggested that the expansion of HMGR genes had occurred in their common ancestor. There was a pseudogene that had a 10-bp deletion resulting in a frameshift mutation and could not be translated into functional proteins in G. arboreum and the A-subgenome of G. hirsutum. The expression profiles of the two pseudogenes showed that they had tissue-specific expression. Additionally, the expression pattern of the pseudogene in the A-subgenome of G. hirsutum was similar to its paralogous gene in the D-subgenome of G. hirsutum. Our results provide useful information for understanding cytosolic terpene biosynthesis in Gossypium species.


Isolation and Identification of Benzochroman and Acylglycerols from Massa Medicata Fermentata and Their Inhibitory Effects on LPS-Stimulated Cytokine Production in Bone Marrow-Derived Dendritic Cells.

  • Ya Nan Sun‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Massa Medicata Fermentata (MMF), known as Shenqu, is an important traditional Chinese medicine widely used to treat indigestion, vomiting, and diarrhea. In this study, a new benzochroman, 3(S)-3,4-dihydro-5,10-di-β-d-glucopyranoside-2,2-dimethyl-2H-naphtho(2,3-b)pyran-3-ol (1), and five known galactosyl acylglycerols (2⁻6) were isolated from a methanol extract from MMF. In addition, their chemical structures were determined by chemical and spectroscopic methods, which were compared with the previously reported data. Furthermore, the effects of isolated compounds on lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells were investigated. Compounds 1⁻3 exhibited significant inhibitory effects on the LPS-induced production of IL-6 and IL-12 p40, with IC50 values ranging from 1.6 to 10.2 μM. Compounds 2 and 3 also exhibited strong inhibitory effects on the LPS-stimulated production of TNF-α with IC50 values of 12.0 and 11.2 μM, respectively. The results might provide a scientific basis for the development of the active components in MMF, as well as for novel anti-inflammatory agents.


Phenolic Constituents from Platycodon grandiflorum Root and Their Anti-Inflammatory Activity.

  • Wei Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Six lignols (1-6), including two new compounds (+)-(7R,8R)-palmitoyl alatusol D (1) and (+)-(7R,8R)-linoleyl alatusol D (2), along with four phenolics (7-10), a neolignan (11), three alkyl aryl ether-type lignans (12-14), two furofuran-type lignans (15-16), three benzofuran-type lignans (17-19), a tetrahydrofuran-type lignan (20), and a dibenzylbutane-type lignan (21) were isolated from the ethyl acetate-soluble fraction of the methanol extract of Platycodon grandiflorum (Jacq.) A. DC. root. The chemical structures of the obtained compounds were elucidated via high-resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy analyses. The obtained spectroscopic data agreed well with literature. Among the isolated compounds, eighteen (1-7 and 11-21) were isolated from P. grandiflorum and the Campanulaceae family for the first time. This is the first report on lignol and lignan components of P. grandiflorum. The anti-inflammatory effects of the isolated compounds were examined in terms of their ability to inhibit the production of pro-inflammatory cytokines IL-6, IL-12 p40, and TNF-α in lipopolysaccharide-stimulated murine RAW264.7 macrophage cells. Nine compounds (4-6, 12, and 15-19) exhibited inhibitory effects on IL-12 p40 production, eleven compounds (1-6, 12, 15-17, and 19) exhibited inhibitory activity on IL-6 production, and eleven compounds (1-6 and 15-19) exhibited inhibitory effects against TNF-α. These results warrant further investigation into the potential anti-inflammatory activity and general benefits of the phenolic constituents of P. grandiflorum root.


Synthesis and cytotoxic evaluation of novel N-methyl-4-phenoxypicolinamide derivatives.

  • Wei Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2011‎

A series of N-methyl-4-phenoxypicolinamide derivatives were synthesized and evaluated in vitro for their cytotoxic activity against A549, H460 and HT29 cell lines. Pharmacological data indicated that some of the target compounds possessed marked antiproliferative activity, superior to that of the reference drug sorafenib. As the most promising compound, 8e exhibited potent cytotoxicity with the IC(50) value of 3.6, 1.7 and 3.0 μM against A549, H460 and HT-29 cell lines, respectively.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: