Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 98 papers

miR-410 acts as an oncogene in colorectal cancer cells by targeting dickkopf-related protein 1 via the Wnt/β-catenin signaling pathway.

  • Wei Wang‎ et al.
  • Oncology letters‎
  • 2019‎

Colorectal cancer (CRC) is a common malignancy with high morbidity. MicroRNAs (miRNAs or miRs) have been demonstrated to be critical post-transcriptional regulators in tumorigenesis. The current study aimed to investigate the effect of miR-410 on the proliferation and metastasis of CRC. The expression of miR-410 was examined in CRC cell lines. SW-480 and HCT-116 CRC cell lines were employed and transfected with miR-410 inhibitor or miR-410 mimics. The association between miR-410 and dickkopf-related protein 1 (DKK-1) was verified by luciferase reporter assay. Cell viability and apoptosis were detected by Cell Counting Kit-8 (CCK-8) and flow cytometry assay. Cell migration and invasion capacity were determined by Transwell assay. The protein level of DKK1, β-catenin and phosphorylated glycogen synthase kinase-3β (pGSK-3β) were analyzed by western blotting. miR-410 was revealed to be upregulated in CRC cell lines. Further studies identified DKK-1 as a direct target of miR-410. In addition, knockdown of miR-410 promoted the expression of DKK, inhibited CRC cell proliferation, migration and invasion capacity, and induced cell apoptosis, while overexpression of miR-410 reversed these results. miR-410 silencing also decreased β-catenin and pGSK-3β levels. The current study indicated that miR-410 negatively regulates the expression of DKK-1 in vitro. miR-410 promotes malignancy phenotypes in CRC cell lines. This regulatory effect of miR-410 may be associated with the Wnt/β-catenin signaling pathway. Therefore, miR-410 could be used as a biomarker for predicting the progression of CRC.


Tumor-derived mesenchymal-stem-cell-secreted IL-6 enhances resistance to cisplatin via the STAT3 pathway in breast cancer.

  • Huitao Xu‎ et al.
  • Oncology letters‎
  • 2018‎

Cisplatin is used for the treatment of a range of solid malignant tumors; however, with prolonged treatment durations, the sensitivity of tumor cells to the drug decreases owing to an unclear mechanism of drug resistance. The present study aimed to investigate whether breast-cancer-tissue-derived mesenchymal stem cells (BC-MSCs) are involved in mediating the effects of cisplatin on breast cancer cells, and which component of the BC-MSC conditioned medium (BC-MSC-CM) exhibited an anti-apoptotic effect. Cytokines/chemokines in BC-MSC-CM were quantified using a Luminex immunoassay, and reverse transcription-quantitative polymerase chain reaction analysis detected interleukin-6 (IL-6) levels in MCF-7 cells following different treatments. MTT and flow cytometry analysis measured cell vitality and apoptosis, respectively, and activation of signal transduced and activator of transcription 3 (STAT3) was evaluated by western blotting. BC-MSCs reversed the pro-apoptotic effect of cisplatin and enhanced the proliferation of MCF-7 cells more potently than bone-marrow-derived MSCs. Further study revealed that BC-MSCs secreted IL-6 to protect MCF-7 cells from apoptosis and promote their survival. Neutralizing IL-6 with a specific antibody partially inhibited the IL-6/STAT3 signaling pathway and reversed the promoter role of BC-MSCs in MCF-7 cells. Taken together, the findings of the present study indicated that BC-MSCs decreased the level of cisplatin-induced apoptosis in MCF-7 cells by activating the IL-6/STAT3 pathway in cancer cells. BC-MSCs, as important cells in the tumor microenvironment, have a key role in the treatment of breast cancer.


Treatment with Huisheng oral solution inhibits the development of pulmonary thromboembolism and metastasis in mice with Lewis lung carcinoma.

  • Wei Wang‎ et al.
  • Oncology letters‎
  • 2014‎

The aim of this study was to investigate whether Huisheng oral solution (HSOS) has an inhibitory effect on the development of pulmonary thrombosis and metastasis in mice with Lewis lung carcinoma (LLC), and to explore the possible mechanisms involved. A mouse model of LLC was developed, and model mice were divided into either a treatment group or a control group to undergo treatment with HSOS or normal saline. Normal mice treated with saline were used as normal controls. On day 25 after treatment, blood samples were drawn from the eyes of half the mice in each group to determine blood cell counts and plasma levels of D-Dimer and vascular endothelial growth factor (VEGF), while heart blood samples were collected from the remaining mice to measure the rate of thrombin-induced platelet aggregation. For all mice, pathological analyses of the cerebrum, lung, mesentery, femoral vein, external iliac vein and spleen were performed. Tumors were weighed to assess the impact of HSOS treatment on tumor growth, and the number of thrombi, metastatic nodules and neovessels in the tumor tissue were counted. In addition, 24 normal New Zealand rabbits were divided into two groups and treated with either HSOS or normal saline to determine the rates of ADP-, collagen- or thrombin-induced platelet aggregation. Compared with the model group, HSOS treatment decreased the incidence of pulmonary thromboembolism and metastasis, the number of metastatic nodules, the plasma levels of D-dimer and VEGF, the rate of collagen-induced platelet aggregation in rabbits and the numbers of leukocytes and tumor neovessels (P<0.05 for all). It increased the thymus and spleen coefficients and the number of platelets (P<0.05 for all), but had no significant effect on thrombin-induced platelet aggregation in mice and rabbits, ADP-induced platelet aggregation in rabbits, or the number of red blood cells. The reduced rate of tumor growth was 9.7% in mice treated with HSOS. HSOS treatment effectively reduced the development of pulmonary thromboembolism and metastasis in mice bearing LLC via mechanisms possibly associated with ameliorating a blood hypercoagulable state, decreasing tumor angiogenesis and enhancing immunity.


Synergistic interaction between sorafenib and gemcitabine in EGFR-TKI-sensitive and EGFR-TKI-resistant human lung cancer cell lines.

  • Jing Li‎ et al.
  • Oncology letters‎
  • 2013‎

Sorafenib is a highly selective multi-targeted agent and has been reported to have potent antitumor effects against various tumors, including human non-small cell lung cancer (NSCLC). In the present study, we explored the antitumor effect and associated molecular mechanisms of sorafenib against human lung cancer cell lines in vitro. We also investigated the efficacy of concurrent and sequential administration of sorafenib and gemcitabine in epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI)-sensitive and EGFR-TKI-resistant NSCLC cell lines. The PC-9 (EGFR-TKI-sensitive, EGFR-mutated) and A549 (EGFR-TKI-resistant, K-Ras-mutated) NSCLC cell lines were treated with sorafenib and gemcitabine, alone, in combination or with different schedules. Cytotoxicity was assessed by MTT assay, cell cycle distribution was analyzed by flow cytometry and alterations in signaling pathways were analyzed by western blotting. We found that sorafenib exhibited dose-dependent growth inhibition in the EGFR-TKI-sensitive and EGFR-TKI-resistant NSCLC cell lines, and the sequence gemcitabine→sorafenib exhibited the strongest synergism. Sorafenib arrested the cell cycle at G1 phase, whereas gemcitabine caused arrest at S phase. The molecular mechanism of this synergism is that the downstream signaling pathways that were initially activated by gemcitabine exposure were efficiently suppressed by the subsequent exposure to sorafenib. By contrast, the reverse of this sequential administration resulted in antagonism, which may be due to differential effects on cell cycle arrest. The results suggest that sorafenib as a single agent exhibits anti-proliferative effects in vitro in NSCLC cell lines with EGFR and K-Ras mutations and that the sequential administration of gemcitabine followed by sorafenib is superior to sorafenib followed by gemcitabine and concurrent administration.


T-cell immunoglobulin and mucin domain-containing protein-3 and galectin-9 protein expression: Potential prognostic significance in esophageal squamous cell carcinoma for Chinese patients.

  • Nan Hou‎ et al.
  • Oncology letters‎
  • 2017‎

The aim of the present study was to investigate the expression levels of the T-cell immunoglobulin and mucin domain-containing protein-3 (TIM-3) and galectin-9 proteins and their clinical value in esophageal squamous cell carcinoma (ESCC) in Chinese patients. The expression profiles of TIM-3 and galectin-9 in ESCC were determined by the immunohistochemical analysis of the postoperative pathological specimens of 45 patients with ESCC; a χ2 test was used to evaluate the association of TIM-3 and galectin-9 expression with clinicopathological parameters, in addition to univariate and multivariate Cox's proportional hazards model to analyze the prognostic value of the expression of TIM-3 and galectin-9 proteins. The proportion of samples exhibiting a high staining intensity for TIM-3 and galectin-9 were 22.22 and 15.56%, respectively: these samples were termed the TIM-3 high-expression group (HEG) and galectin-9-HEG. There was a negative correlation between the expression of TIM-3 and galectin-9 (R=-0.71, P<0.001). The results of Kaplan-Meier survival analysis led to the conclusion that, compared with the TIM-3 low expression group (LEG), patients in the TIM-3-HEG exhibited a poorer overall survival rate (χ2=6.049, P=0.0139). By contrast, patients in the galectin-9-HEG exhibited a significantly better overall survival rate than those in the galectin-9-LEG (χ2=4.915, P=0.0266). However, the levels of TIM-3 and galectin-9 expression were not identified as independent indicators for the prognosis of patients with ESCC. As high TIM-3 and low galectin-9 expression levels were associated with a poor prognosis for patients with ESCC in the present study, these proteins may be potential prognostic indicators for ESCC.


Elevated expression of Nrf2 mediates multidrug resistance in CD133+ head and neck squamous cell carcinoma stem cells.

  • Bao-Cai Lu‎ et al.
  • Oncology letters‎
  • 2016‎

Enhanced expression of the ATP-binding cassette (ABC) transporter protein ABC sub-family G member 2 (ABCG2) in cancer stem cells (CSCs) plays a major role in chemotherapeutic drug efflux, which results in therapy failure and tumor relapse. In addition to downregulating apoptosis in CSCs, it has been reported that the transcriptional upregulation of the redox sensing factor Nrf2 is involved in the upregulation of ABCG2 expression and consequent chemoresistance. The current study investigated the presence of cancer stem-like side population (SP) cells from head and neck squamous cell carcinoma (HNSCC) samples, and evaluated the Nrf2 expression profile and multidrug resistance properties of HNSCC stem cells. Fluorescence-activated cell sorting was used for SP cells detection, while reverse transcription-polymerase chain reaction was used for the analysis of Nrf2 expression. The present study identified ~2.1% SP cells present in HNSCC specimens, which were positive for cluster of differentiation (CD)133 expression and displayed significantly elevated messenger RNA expression of Nrf2, compared with non-SP cells. These data suggest that the ABC transporter ABCG2 is highly upregulated in SP cells, and this results in multidrug resistance. In addition, these CD133+ cells underwent rapid proliferation and exhibited high self-renewal and tumorigenic properties. Taken together, the present findings suggest that elevated expression of Nrf2 mediated drug resistance in HNSCC CSCs, which may be one of the causative factors for cancer treatment failure. Therefore, novel anti-cancer drugs that downregulate the Nrf2 signaling pathway could effectively improve the treatment and survival rate of patients with HNSCC.


Upregulation of Holliday junction recognition protein predicts poor prognosis and biochemical recurrence in patients with prostate cancer.

  • Yan-Fei Chen‎ et al.
  • Oncology letters‎
  • 2019‎

Abnormal expression of Holliday junction recognition protein (HJURP) in several types of tumor cells plays a vital role in the formation and progression of tumors. Few studies have investigated the role of HJURP in prostate cancer (PCa). The aim of this study was to analyze the expression levels of HJURP in PCa and to establish the association with clinicopathological data. Reverse transcription quantitative polymerase chain reaction and immunohistochemical analysis were used to detect the expression levels of HJURP in benign and PCa prostate tissues. The Taylor dataset was statistically analyzed to determine if HJURP expression levels were associated with PCa clinicopathological data. HJURP was overexpressed in PCa tissues compared with benign prostate tissues. Statistical analysis of the Taylor dataset indicated that upregulation of HJURP was significantly associated with positive prostate-specific antigen (PSA) levels (P=0.004), high Gleason score (P=0.005), advanced pathological stage (P=0.007), metastasis (P<0.001) and PSA failure (P<0.001). Higher HJURP mRNA expression levels were significantly associated with shorter biochemical recurrence (BCR)-free survival (P<0.001). To the best of our knowledge, this study is the first report of HJURP upregulation in PCa tissues. Upregulation of HJURP may predict BCR-free survival and HJURP may be an oncogene that impacts the prognosis of patients with PCa.


Impact of molecular subtypes on metastatic behavior and overall survival in patients with metastatic breast cancer: A single-center study combined with a large cohort study based on the Surveillance, Epidemiology and End Results database.

  • Hong Yang‎ et al.
  • Oncology letters‎
  • 2020‎

Breast cancer is a highly heterogeneous disease at the molecular level and >90% of mortalities are due to metastasis and its associated complications. The present study determined the impact of molecular subtypes on metastatic behavior and overall survival (OS) of patients with metastatic breast cancer. The influence of molecular subtypes on the sites and number of metastases in 166 patients with metastatic breast cancer from a single center were assessed; and the influence of molecular subtypes on the sites and number of metastases and OS in 15,322 metastatic cases among 329,770 patients with primary breast cancer from the Surveillance, Epidemiology and End Results database were assessed. Analysis of both datasets revealed that different molecular subtypes exhibited differences in the prevalence of different metastatic sites and number of metastases. A larger proportion of bone metastasis was observed in the hormone receptor (HR)+/human epidermal growth factor receptor 2 (HER2)+ subtype than in other subtypes, more lung metastasis was observed in the HR-/HER2+ subtype and more liver metastasis occurred in the HR+/HER2+ and HR-/HER2+ subtypes. Single-site metastasis was more common for the HR+/HER2- subtype than in other subtypes, while 2-3 sites of metastases were more common for the HR+/HER2+ subtype and ≥4 sites of metastases were more frequent in the HR-/HER2+ and HR-/HER2- subtypes. The mean OS of patients with primary breast cancer in the HR+/HER2- subtype group was the longest (78.5 months), while the HR-/HER2- group had the shortest mean OS (69.1 months). The mean OS of the metastatic HR+/HER2+ group was the longest (46.0 months), while the mean OS of the metastatic HR-/HER2- group was the shortest (18.5 months). In conclusion, the results of the present study suggested that different molecular subtypes of breast cancer have different metastatic behavior, as well as mean OS.


Effects and mechanism of siomycin A on the growth and apoptosis of MiaPaCa-2 cancer cells.

  • Bin Wang‎ et al.
  • Oncology letters‎
  • 2019‎

Siomycin A is a type of thiopeptide antibiotic that is isolated from the fermentation products of an endophytic actinomycin, which is derived from the medicinal plant Acanthopanax senticosus. The present study investigated whether siomycin A has antitumor effects in vitro on a variety of cell lines. A Cell Counting Kit-8 assay was performed to detect the effects of siomycin A on cell viability; morphological changes in the MiaPaCa-2 cell line were analyzed using an inverted phase contrast microscope. A Transwell migration assay was applied to detect cell migration ability. The cytoskeleton was observed by laser confocal microscopy, and apoptosis was detected using flow cytometry. A western blot assay was used to detect the expression of matrix metalloproteinase (MMP)-2, MMP-9 and α-tubulin. The results revealed that siomycin A inhibited the proliferation of human tumor cell lines of different origins. As the concentration of siomycin A increased, the cell density decreased gradually and cells exhibited a morphological change from spindle to spherical shape. Furthermore, 24 h after administration, the cell migration ability was inhibited. The cytoskeleton complexity and morphological changes were increased after administration of siomycin A. The percentage of apoptotic cells was significantly increased and the expression levels of MMP-2, MMP-9 and α-tubulin were downregulated by siomycin A. Therefore, siomycin A was determined to effectively inhibit the proliferative ability of a variety of human tumor cell lines. Siomycin A was also determined to affect the cytoskeleton of tumor cells by downregulating the expression of α-tubulin protein.


Identification of key genes and pathways downstream of the β-catenin-TCF7L1 complex in pancreatic cancer cells using bioinformatics analysis.

  • Yi-Hang Yuan‎ et al.
  • Oncology letters‎
  • 2019‎

As a key component of the Wnt signaling pathway, the β-catenin-transcription factor 7 like 1 (TCF7L1) complex activates transcription and regulates downstream target genes that serve important roles in the pathology of pancreatic cancer. To identify associated key genes and pathways downstream of the β-catenin-TCF7L1 complex in pancreatic cancer cells, the current study used the gene expression profiles GSE57728 and GSE90926 downloaded from the Gene Expression Omnibus. GSE57728 is an array containing information regarding β-catenin knockdown and GSE90926 was developed by high throughput sequencing to provide information regarding TCF7L1 knockdown. Subsequently, differentially expressed genes (DEGs) were sorted separately and the shared 88 DEGs, including 37 upregulated and 51 downregulated genes, were screened. Clustering analysis of these DEGs was performed by heatmap analysis. Functional and pathway enrichment analyses were then performed using FunRich software and Database for Annotation, Visualization and Integrated Discovery, which revealed that the DEGs were predominantly enriched in terms associated with transport, transcription factor activity, and cytokine and chemokine mediated signaling pathway process. A DEG-associated protein-protein interaction (PPI) network, consisting of 58 nodes and 171 edges, was then constructed using Cytoscape software and the 15 genes with top node degrees were selected as the hub genes. Overall survival (OS) analysis of the 88 DEGs was performed and the relevant gene expression datasets were downloaded from The Cancer Genome Atlas. Consequently, three upregulated and seven downregulated genes were identified to be associated with prognosis. Furthermore, high expression levels of five downregulated genes, including CXCL5, CYP27C1, FUBP1, CDK14 and TRIM24, were associated with worse OS. In addition, CDK14 and TRIM24 were revealed as hub genes in the PPI network and both were confirmed to be involved in the Wnt/β-catenin pathway and phosphoinositide 3-kinase/Akt signaling pathway. Promoter analysis was also applied to the five downregulated DEGs associated with prognosis, which revealed that TCF7L1 may serve as a transcription factor of the DEGs. In conclusion, the genes and pathways identified in the current study may provide potential targets for the diagnosis and treatment of pancreatic cancer.


MALAT1 knockdown inhibits hypopharyngeal squamous cell carcinoma malignancy by targeting microRNA-194.

  • Hongming Wang‎ et al.
  • Oncology letters‎
  • 2020‎

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is involved in the oncogenesis and progression of various types of cancer. However, the function of MALAT1 in hypopharyngeal squamous cell carcinoma (HSCC) is not completely understood. In the present study, MALAT1 expression levels were determined using reverse transcription-quantitative PCR, and Cell Counting Kit-8, Transwell and flow cytometry assays were performed to investigate the biological functions of HSCC cells. The results indicated that MALAT1 was upregulated in HSCC. MALAT1 knockdown suppressed HSCC cell proliferation, migration and invasion, and promoted apoptosis compared with the control group. Additionally, microRNA (miR)-194 was identified as a target of MALAT1 and was expressed at low levels in HSCC tissues compared with adjacent non-tumor tissues. A miR-194 agomir inhibited malignant cell behaviors, including cell proliferation, migration and invasion, whereas miR-194 antagomir promoted malignant behaviors compared with the corresponding control groups. In addition, the results suggested that MALAT1 knockdown inhibited the malignant behaviors of HSCC cells by binding miR-194. miR-194 inhibition partially reversed the MALAT1 knockdown-induced inhibitory effects on HSCC cells. Furthermore, MALAT1 knockdown combined with miR194 mimics resulted in the lowest tumor volume among all tested groups in vivo. In conclusion, the results of the present study suggested that MALAT1 knockdown suppressed the malignant behavior of HSCC by targeting miR-194; therefore, MALAT1 may serve as a novel therapeutic target for HSCC.


Prognostic evaluation of resectable colorectal cancer using platelet-associated indicators.

  • Weihua Qian‎ et al.
  • Oncology letters‎
  • 2019‎

Colorectal cancer (CRC) represents the third most common malignancy worldwide. The aim of the present study was to investigate the predictive values of platelet-associated indicators, including platelet count (PLT), plateletcrit (PCT), mean platelet volume (MPV) and platelet distribution width (PDW) in patients with resectable CRC. The current retrospective study included 153 patients who were pathologically diagnosed with resectable CRC. The patients were divided into two groups according to the median value of PLT, PCT, MPV or PDW. To evaluate the changes in PLT, PCT, MPV and PDW following resection and adjuvant chemotherapy, the concept of post-/pre-treatment PLT, PCT, MPV and PDW ratios was introduced, where <1 indicated decreased PLT, PCT, MPV and PDW values after treatment, and where ≥1 suggested stable or increased values. It was revealed that a low MPV prior to treatment correlated with a higher tumor stage. Surgery significantly decreased MPV, but had no impact on PLT, PCT or PDW. Adjuvant chemotherapy significantly decreased PLT and PCT, increased MPV and had no effect on PDW. After the whole course of treatment (surgery combined with adjuvant chemotherapy), PLT, PCT and PDW were significantly decreased. Kaplan-Meier plots illustrated that patients with a post-/pre-treatment MPV ratio <1 had poorer overall survival (OS), whereas the post-/pre-treatment ratios for PLT, PCT and PDW did not correlate with patient outcome. Multivariate Cox regression analysis revealed that sex, tumor size and the post-/pre-treatment MPV ratio were prognostic factors for OS. Therefore, the present results may suggest MPV as a potential prognostic factor in resectable CRC.


Identification of differentially expressed genes using microarray analysis and COL6A1 induction of bone metastasis in non-small cell lung cancer.

  • Nan Li‎ et al.
  • Oncology letters‎
  • 2021‎

Non-small cell lung cancer (NSCLC) is a major cause of cancer-associated mortality worldwide, and bone metastasis is the most prevalent event observed in patients with advanced NSCLC. However, the pathogenesis of bone metastases has not been fully elucidated. In the present study, differentially expressed genes (DEGs) were identified by gene expression microarray analysis of NSCLC tissue samples with or without bone metastases. Subsequently, collagen type 6A1 (COL6A1) was chosen as the target gene through Ingenuity Pathway Analysis and reverse transcription-quantitative (RT-q) PCR validation of the top eight DEGs. COL6A1 was overexpressed or knocked down, and the proliferation and invasion of NSCLC cells was assessed using Cell Counting Kit-8, colony formation and Transwell invasion assays. Additionally, the osteogenic capacity of HOB and hES-MP 002.5 cells was assessed using RT-qPCR, western blotting, Alizarin Red and alkaline phosphatase staining. A total of 364 DEGs were identified in NSCLC tissues with bone metastases compared with NSCLC tissues without bone metastases, including 140 upregulated and 224 downregulated genes. Gene Ontology analysis results demonstrated that the upregulated and downregulated genes were primarily enriched in 'cellular process', 'metabolic process' and 'biological regulation'. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the upregulated genes were primarily enriched in 'cysteine and methionine metabolism', 'oxidative phosphorylation' and 'ribosome', whereas the downregulated genes were primarily enriched in the 'transcriptional misregulation in cancer', 'ribosome' and 'mitophagy-animal' pathways. COL6A1 was highly expressed in NSCLC tissue samples with bone metastases. Functionally, COL6A1 overexpression induced the proliferation and invasion of HARA cells, and its knockdown inhibited the proliferation and invasion of HARA-B4 cells. Finally, it was demonstrated that HOB and hES-MP 002.5 cells exhibited osteogenic capacity, and overexpression of COL6A1 in HARA cells increased the adhesion of these cells to the osteoblasts, whereas knockdown of COL6A1 in HARA-B4 cells reduced their adhesive ability. In conclusion, COL6A1 may serve as a potential diagnostic marker and therapeutic target for bone metastasis in NSCLC.


MYG1 promotes proliferation and inhibits autophagy in lung adenocarcinoma cells via the AMPK/mTOR complex 1 signaling pathway.

  • Xiaodan Han‎ et al.
  • Oncology letters‎
  • 2021‎

Melanocyte proliferating gene 1 (MYG1) is an exonuclease that participates in RNA processing and is required for normal mitochondrial function. However, its role in tumorigenesis remains unknown. The present study aimed to investigate the role of MYG1 and its underlying mechanisms in human lung adenocarcinoma (LUAD). The expression levels of MYG1 in tumor tissues of patients with LUAD were obtained from public cancer databases and analyzed using the UALCAN online software. The association between MYG1 expression levels and the prognosis of patients with LUAD was analyzed using the Kaplan-Meier plotter. In addition, the role of MYG1 in the LUAD A549 and H1993 cell lines was determined by knocking down MYG1 expression with a specific small interfering RNA or by overexpressing it with a MYG1-containing plasmid. The results demonstrated that MYG1 expression levels were upregulated in LUAD tissues compared with those in normal lung tissues from healthy subjects, and high MYG1 expression levels were associated with an unfavorable prognosis. MYG1 promoted the proliferation, migration and invasion of A549 and H1993 cells. In addition, MYG1 inhibited autophagy via the AMP-activated protein kinase/mTOR complex 1 signaling pathway. Collectively, the present results suggested that MYG1 may serve an oncogenic role in LUAD and may be a potential therapeutic target for LUAD.


MicroRNA-431 serves as a tumor inhibitor in breast cancer through targeting FGF9.

  • Wei Wang‎ et al.
  • Oncology letters‎
  • 2020‎

Breast cancer has become an important public health problem. Moreover, the functions of microRNA-431 (miR-431) have been detected in human cancers other than breast cancer. Hence, we investigated the role of miR-431 in progression of breast cancer. RT-qPCR and Western blot analysis were performed to assess expression of miR-431 and genes. The regulatory mechanism of miR-431 was investigated using MTT, Transwell and luciferase reporter assay. Decreased miR-431 expression was identified in breast cancer, which was related to aggressive behavior. Furthermore, miR-431 restrained cell proliferation, metastasis and EMT in breast cancer. miR-431 induced apoptosis through enhancing Bax expression. In addition, miR-431 was found to directly target FGF9. Moreover, upregulation of FGF9 impaired the anti-tumor effect of miR-431 in breast cancer. miR-431 restrained cell viability and metastasis in breast cancer through targeting FGF9, indicating that miR-431 serves as a tumor inhibitor in breast cancer.


Long non-coding RNA OTUD6B-AS1 overexpression inhibits the proliferation, invasion and migration of colorectal cancer cells via downregulation of microRNA-3171.

  • Wei Wang‎ et al.
  • Oncology letters‎
  • 2021‎

Colorectal cancer (CRC) is a common digestive system malignancy and a major cause of cancer-associated mortality worldwide. Aberrant expression of long non-coding RNAs has been reported in several types of cancer. The aim of the present study was to investigate the role of ovarian tumor domain containing 6B antisense RNA1 (OTUD6B-AS1) in CRC and its underlying mechanisms. OTUD6B-AS1 expression in CRC cell lines was examined using reverse transcription-quantitative PCR. Furthermore, The Cancer Genome Atlas database was utilized to examine the expression levels of OTUD6B-AS1 in CRC tissues. Following OTUD6B-AS1 overexpression, Cell Counting Kit-8 and colony formation assays were used to detect the proliferation ability of HCT116 cells. The expression levels of proliferation-related protein Ki67 were determined using immunofluorescence staining. Subsequently, Transwell and wound healing assays were used to evaluate the invasion and migration of HCT116 cells, respectively. The expression levels of migration-related proteins (MMP2 and MMP9) were measured using western blotting. Additionally, a luciferase reporter assay was used to verify the potential interaction between OTUD6B-AS1 and microRNA-3171 (miR-3171). Subsequently, rescue assays were performed to clarify the regulatory effects of OTUD6B-AS1 and miR-3171 on CRC development. The results demonstrated that OTUD6B-AS1 expression was low in CRC cells and tissues. Overexpression of OTUD6B-AS1 inhibited the proliferation, invasion and migration of HCT116 cells. Furthermore, miR-3171 was demonstrated to be a direct target of OTUD6B-AS1 using a luciferase reporter assay. The rescue assays revealed that miR-3171 mimics markedly reversed the inhibitory effects of OTUD6B-AS1 overexpression on proliferation, invasion and migration of CRC cells. Overall, these findings demonstrated that OTUD6B-AS1 overexpression inhibited the proliferation, invasion and migration of HCT116 cells via downregulation of miR-3171, suggesting that OTUD6B-AS1 may serve as a novel biomarker for CRC treatment.


SOCS2 is a potential prognostic marker that suppresses the viability of hepatocellular carcinoma cells.

  • Jiankun Liu‎ et al.
  • Oncology letters‎
  • 2021‎

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-associated mortality worldwide. Thus, there is an urgent requirement to identify novel diagnostic and prognostic biomarkers for this disease. The present study aimed to identify the hub genes associated with the progression and prognosis of patients with HCC. A total of three expression profiles of HCC tissues were extracted from the Gene Expression Omnibus (GEO) database, followed by the identification of differentially expressed genes (DEGs) using the GEO2R method. The identified DEGs were assessed for survival significance using Kaplan-Meier analysis. Among the 15 identified DEGs in HCC tissues [cytochrome P450 family 39 subfamily A member 1, cysteine rich angiogenic inducer 61, Fos proto-oncogene, forkhead transcription factor 1 (FOXO1), growth arrest and DNA damage inducible β, Inhibitor of DNA binding 1, interleukin-1 receptor accessory protein, metallothionein-1M, pleckstrin homology-like domain family A member 1, Rho family GTPase 3, serine dehydratase, suppressor of cytokine signaling 2 (SOCS2), tyrosine aminotransferase (TAT), S100 calcium-binding protein P and serine protease inhibitor Kazal-type 1 (SPINK1)]. Low expression levels of FOXO1, SOCS2 and TAT and high SPINK1 expression indicated poor survival outcomes for patients with HCC. In addition, SOCS2 was associated with distinct stages of HCC progression in patients and presented optimal diagnostic value. In vitro functional experiments indicated that overexpression of SOCS2 inhibited HCC cell proliferation and migration. Taken together, the results of the present study suggest that SOCS2 may act as a valuable prognostic marker that is closely associated with HCC progression.


STAMBPL1 knockdown has antitumour effects on gastric cancer biological activities.

  • Da-Jun Yu‎ et al.
  • Oncology letters‎
  • 2019‎

The present study aimed to investigate the effects and mechanisms of STAM binding protein-like 1 (STAMBPL1) knockdown in the suppression of gastric cancer activities. Pathological data and STAMBPL1 protein expression were analysed in 36 patients with gastric cancer, including 24 stage I-II and 12 stage III-IV patients, by haematoxylin and eosin staining and immunohistochemistry. In vitro cell experiments were performed to measure AGS cell proliferation, apoptosis, invasion and migration by MTT, Celigo cell count, flow cytometry, Transwell and wound healing assays following STAMBPL1 knockdown. The relative protein expression levels were evaluated by western blotting. When compared with the adjacent normal tissues, STAMBPL1 protein expression in the gastric cancer tissues with increasing stages was significantly upregulated (P<0.01 or P<0.001). STAMBPL1 gene expression was not identified to be significantly different between AGS and MGC80-3 gastric cancer cells (P>0.05). Following STAMBPL1 knockdown by short hairpin RNA (sh)STAMBPL1, cell proliferation was significantly suppressed, the cell apoptosis rate was significantly upregulated, and the numbers of invasive AGS cells and the AGS wound healing rate were significantly decreased (P<0.01 and P<0.001, respectively), compared with those in the shControl group. Additionally, STAMBPL1 and NF-κB protein expression levels were significantly downregulated in the shSTAMBPL1 group (P<0.001, respectively). STAMBPL1 may be oncogenic in gastric cancer, and STAMBPL1 knockdown may suppress gastric cancer development.


Exosome complex genes mediate RNA degradation and predict survival in mantle cell lymphoma.

  • Weilong Zhang‎ et al.
  • Oncology letters‎
  • 2019‎

Exosome complex (EXOSC) genes, which encode a multi-protein intracellular complex, mediate the degradation of various types of RNA molecules. EXOSCs, also known as polymyositis/scleroderma complexes, exist in eukaryotic cells and archaea, and primarily mediate 3' to 5'mRNA degradation. However, how EXOSC genes are implicated in processes of B-cell immune-associated pathways and B-cell tumorigenesis remains unclear. The present bioinformatics study indicated that 6 of 10 EXOSC genes, particularly the EXO.index, were able to predict the survival of patients with mantle cell lymphoma (MCL), by analyzing gene expression profiles of 123 patients with MCL from the Gene Expression Omnibus database. The results suggested that EXOSC gene expression may be a molecular marker for MCL. Compared with the whole transcript profile, patients with MCL with a high EXO.index exhibited poorer survival and decreased RNA levels, which was also verified in a second dataset. The EXOSC genes may be associated with DNA repair and B-cell activation pathways, which may be the cause of poorer survival of patients with MCL.


Effect of CXCL12/CXCR4 on increasing the metastatic potential of non-small cell lung cancer in vitro is inhibited through the downregulation of CXCR4 chemokine receptor expression.

  • Songping Xie‎ et al.
  • Oncology letters‎
  • 2014‎

Lung cancer ranks as the most common type of cancer in males worldwide. Although great advances have been achieved in chemotherapy and radiotherapy, the long-term survival rate of lung cancer patients has not improved significantly. Dissemination of lung cancer in the thoracic cavity and metastatic spread to the liver, bone and brain are characteristic of non-small cell lung cancer (NSCLC), constituting the primary source of morbidity and mortality in lung cancer. Increasing evidence also indicates that the CXC chemokine receptor 4 (CXCR4)/chemokine CXC motif ligand 12 (CXCL12) chemokine axis is important for the cell invasion and migration of lung cancer. CXCR4 is a G protein-coupled receptor with a major role in lymphocyte homing. Its ligand, CXCL12, is secreted by target organs and functions as a highly efficient chemotactic factor for T cells, monocytes, pre-B cells, dendritic cells and myeloid bone marrow-derived cells. In the current study, recombinant CXCR4-specific small interfering RNA-pBSilence1.1 plasmids were constructed and transfected into the A549 NSCLC cell line in vitro. Reverse transcription polymerase chain reaction and western blotting revealed that CXCR4 was downregulated in transfected cells compared with control cells. The results of MTT and Transwell migration assays indicated that the specific downregulation of CXCR4 inhibited cell growth, invasiveness and migration. Thus, siRNA targeting of CXCR4 may effectively inhibit the effect of CXCL12/CXCR4 on increasing the metastatic potential of NSCLC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: