Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 191 papers

Clinical prognostic significance and pro-metastatic activity of RANK/RANKL via the AKT pathway in endometrial cancer.

  • Jing Wang‎ et al.
  • Oncotarget‎
  • 2016‎

RANK/RANKL plays a key role in metastasis of certain malignant tumors, which makes it a promising target for developing novel therapeutic strategies for cancer. However, the prognostic value and pro-metastatic activity of RANK in endometrial cancer (EC) remain to be determined. Thus, the present study investigated the effect of RANK on the prognosis of EC patients, as well as the pro-metastatic activity of EC cells. The results indicated that those with high expression of RANK showed decreased overall survival and progression-free survival. Statistical analysis revealed the positive correlations between RANK/RANKL expression and metastasis-related factors. Additionally, RANK/RANKL significantly promoted cell migration/invasion via activating AKT/β-catenin/Snail pathway in vitro. However, RANK/RANKL-induced AKT activation could be suppressed after osteoprotegerin (OPG) treatment. Furthermore, the combination of medroxyprogesterone acetate (MPA) and RANKL could in turn attenuate the effect of RANKL alone. Similarly, MPA could partially inhibit the RANK-induced metastasis in an orthotopic mouse model via suppressing AKT/β-catenin/Snail pathway. Therefore, therapeutic inhibition of MPA in RANK/RANKL-induced metastasis was mediated by AKT/β-catenin/Snail pathway both in vitro and in vivo, suggesting a potential target of RANK for gene-based therapy for EC.


Dasatinib induces DNA damage and activates DNA repair pathways leading to senescence in non-small cell lung cancer cell lines with kinase-inactivating BRAF mutations.

  • Shaohua Peng‎ et al.
  • Oncotarget‎
  • 2016‎

Improved therapies are greatly needed for non-small cell lung cancer (NSCLC) that does not harbor targetable kinase mutations or translocations. We previously demonstrated that NSCLC cells that harbor kinase-inactivating BRAF mutations (KIBRAF) undergo senescence when treated with the multitargeted kinase inhibitor dasatinib. Similarly, treatment with dasatinib resulted in a profound and durable response in a patient with KIBRAF NSCLC. However, no canonical pathways explain dasatinib-induced senescence in KIBRAF NSCLC. To investigate the underlying mechanism, we used 2 approaches: gene expression and reverse phase protein arrays. Both approaches showed that DNA repair pathways were differentially modulated between KIBRAF NSCLC cells and those with wild-type (WT) BRAF. Consistent with these findings, dasatinib induced DNA damage and activated DNA repair pathways leading to senescence only in the KIBRAF cells. Moreover, dasatinib-induced senescence was dependent on Chk1 and p21, proteins known to mediate DNA damage-induced senescence. Dasatinib also led to a marked decrease in TAZ but not YAP protein levels. Overexpression of TAZ inhibited dasatinib-induced senescence. To investigate other vulnerabilities in KIBRAF NSCLC cells, we compared the sensitivity of these cells with that of WTBRAF NSCLC cells to 79 drugs and identified a pattern of sensitivity to EGFR and MEK inhibitors in the KIBRAF cells. Clinically approved EGFR and MEK inhibitors, which are better tolerated than dasatinib, could be used to treat KIBRAF NSCLC. Our novel finding that dasatinib induced DNA damage and subsequently activated DNA repair pathways leading to senescence in KIBRAF NSCLC cells represents a unique vulnerability with potential clinical applications.


Soluble Toll-like receptor 4 is a potential serum biomarker in non-small cell lung cancer.

  • Feng Wei‎ et al.
  • Oncotarget‎
  • 2016‎

This study investigated the clinical significance of serum soluble Toll-like receptor 4 (sTLR4) in non-small cell lung cancer (NSCLC). A total of 54 NSCLC patients and 13 healthy volunteers were enrolled from January 2012 to December 2013. The patients with NSCLC were characterized by significantly higher serum levels of sTLR4 compared with those in healthy controls (P < 0.01). A positive correlation between serum sTLR4 and tumor stage was found in patients with stages I-III NSCLC. However, serum sTLR4 in patients with metastatic NSCLC was significantly decreased compared with those with stage III NSCLC (P < 0.05). Furthermore, low serum sTLR4 was identified as a prognostic marker for poor survival of early-stage NSCLC patients who received surgical resection. In conclusion, our present study identified sTLR4 as a potential serum biomarker of NSCLC.


H19 long noncoding RNA alters trophoblast cell migration and invasion by regulating TβR3 in placentae with fetal growth restriction.

  • Lisa Zuckerwise‎ et al.
  • Oncotarget‎
  • 2016‎

Fetal growth restriction (FGR) is a well-recognized risk factor for perinatal mortality and morbidity, as well as neurodevelopmental impairment and adulthood onset disorders. Here we report that the H19 long noncoding RNA (lncRNA) is significantly decreased in placentae from pregnancies with FGR. Downregulation of H19 leads to reduced migration and invasion of extravillous trophoblast (EVT) cells in vitro. This is consistent with reduced trophoblast invasion that has been observed in FGR. Genome-scale transcriptome profiling of EVT cells reveals significantly decreased expression of the type III TGF-β receptor (TβR3) following H19 knockdown. Decreased TβR3 expression is also seen in FGR placentae. TβR3 repression decreases EVT cell migration and invasion, owing to impaired TGF-β signaling through a non-canonical TGF-β signaling pathway. Further, we identify TβR3 as a novel regulatory target of microRNA let-7. We propose that dysregulation of this newly identified H19/TβR3-mediated regulatory pathway may contribute to the molecular mechanism of FGR. Our findings are the first to show a lncRNA-based mechanism of FGR, holding promise for the development of novel predictive, diagnostic, and therapeutic modalities for FGR.


Loss of large tumor suppressor 1 promotes growth and metastasis of gastric cancer cells through upregulation of the YAP signaling.

  • Jing Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

Accumulating evidence shows that large tumor suppressor 1 (LATS1) as a novel resident governor of cellular homeostasis is implicated in multiple tumorigenic properties including cell growth, apoptosis and metastasis. However, the contribution of LATS1 to gastric carcinoma (GC) remains unclear. The correlation of LATS1 expression with clinicopathologic characteristics, GC prognosis and recurrence was analyzed by immunohistochemistry, Univariate and Kaplan-Meier analysis. Functional experiments were performed to investigate biological behaviors of GC cells and underlying molecular mechanisms. Tumor growth and metastasis was assessed in vivo using orthotopic implantation GC models in severe combined immune deficiency (SCID) mice. Consequently, decreased LATS1 expression was significantly associated with the lymph node metastasis, poor prognosis and recurrence. Ectopic expression of LATS1 decreased GC cell proliferation and invasion in vitro and inhibited tumor growth and liver metastasis in vivo, but depletion of LATS1 expression restored the invasive phenotype. Further observation indicated that YAP pathway was required for LATS1-induced inhibition of cell growth and invasion, and LATS1 restrained nuclear transfer of YAP, downregulated YAP, PCNA, CTGF, MMP-2, MMP-9, Bcl-2 and CyclinD1 expression and upregulated p-YAP and Bax expression. Our findings suggest that LATS1 is a potential candidate tumor suppressor and inhibits the growth and metastasis of GC cells via downregulation of the YAP signaling.


High expression of RUNX1 is associated with poorer outcomes in cytogenetically normal acute myeloid leukemia.

  • Lin Fu‎ et al.
  • Oncotarget‎
  • 2016‎

Depending on its expression level, RUNX1 can act as a tumor promoter or suppressor in hematological malignancies. The clinical impact of RUNX1 expression in cytogenetically normal acute myeloid leukemia (CN-AML) remained unknown, however. We evaluated the prognostic significance of RUNX1 expression using several public microarray datasets. In the testing group (n = 157), high RUNX1 expression (RUNX1high) was associated with poorer overall survival (OS; P = 0.0025) and event-free survival (EFS; P = 0.0025) than low RUNX1 expression (RUNX1low). In addition, the prognostic significance of RUNX1 was confirmed using European Leukemia Net (ELN) genetic categories and multivariable analysis, which was further validated using a second independent CN-AML cohort (n = 162, OS; P = 0.03953). To better understand the mechanisms of RUNX1, we investigated genome-wide gene/microRNAs expression signatures and cell signaling pathways associated with RUNX1 expression status. Several known oncogenes/oncogenic microRNAs and cell signaling pathways were all up-regulated, while some anti-oncogenes and molecules of immune activation were down-regulated in RUNX1high CN-AML patients. These findings suggest RUNX1high is a prognostic biomarker of unfavorable outcome in CN-AML, which is supported by the distinctive gene/microRNA signatures and cell signaling pathways.


JQ1 suppresses tumor growth via PTEN/PI3K/AKT pathway in endometrial cancer.

  • Haifeng Qiu‎ et al.
  • Oncotarget‎
  • 2016‎

Overexpression of c-Myc is associated with worse outcomes in endometrial cancer, indicating that c-Myc may be a promising target for endometrial cancer therapy. A novel small molecule, JQ1, has been shown to block BRD4 resulting in inhibition of c-Myc expression and tumor growth. Thus, we investigated whether JQ1 can inhibit endometrial cancer growth in cell culture and xenograft models. In PTEN-positive endometrial cancer cells, JQ1 significantly suppressed cell proliferation via induction of G1 phase arrest and apoptosis in a dose-dependent manner, accompanied by a sharp decline in cyclin D1 and CDK4 protein expression. However, PTEN-negative endometrial cancer cells exhibited intrinsic resistance to JQ1, despite significant c-Myc inhibition. Moreover, we found that PTEN and its downstream PI3K/AKT signaling targets were modulated by JQ1, as evidenced by microarray analysis. Silencing of PTEN in PTEN-positive endometrial cancer cells resulted in resistance to JQ1, while upregulation of PTEN in PTEN-negative endometrial cancer cells increased sensitivity to JQ1. In xenografts models of PTEN-positive and PTEN-knock-in endometrial cancer, JQ1 significantly upregulated the expression of PTEN, blocked the PI3K/AKT signaling pathway and suppressed tumor growth. These effects were attenuated in PTEN-negative and PTEN-knockdown xenograft models. Thus, JQ1 resistance appears to be highly associated with the status of PTEN expression in endometrial cancer. Our findings suggest that targeting BRD4 using JQ1 might serve as a novel therapeutic strategy in PTEN-positive endometrial cancers.


MicroRNA-33a-3p suppresses cell migration and invasion by directly targeting PBX3 in human hepatocellular carcinoma.

  • Shu-Yan Han‎ et al.
  • Oncotarget‎
  • 2016‎

MicroRNAs (miRNAs) have been shown to function as either oncogenes or tumor suppressors by negatively regulating target genes involved in tumor initiation and progression. In this study, we demonstrated that down-regulation of miR-33a-3p in human primary hepatocellular cancer (HCC) specimens was significantly associated with metastases and poor survival. Over-expression of miR-33a-3p in HepG2 cells remarkably suppressed not only cell growth, migration and invasion, but also tumor growth and metastases in the chick embryo chorioallantoic membrane (CAM) assay, and down-regulated Pre-B-Cell Leukemia Homeobox 3 (PBX3) expression. Conversely, inhibition of miR-33a-3p in Bel-7402 cells resulted in increased of cell growth, spreading and invasion. Furthermore, rescue experiments by over-expression PBX3 completely eliminated the inhibitory effects of miR-33a-3p on tumor growth and metastasis, both in vitro and in vivo. The luciferase assay showed that 3'-untranslated regions (3'-UTRs) of PBX3 were inhibited significantly by miR-33a-3p, while mutations in the miR-33a-3p pairing residues rescued the luciferase expression. Taken together, our findings suggest that miR-33a-3p suppressed the malignant phenotype while also inhibiting PBX3 expression in hepatocellular cancer, implying that miR-33a-3p may be a promising biomarkers and therapy target for HCC intervention.


Downregulation of ATOH8 induced by EBV-encoded LMP1 contributes to the malignant phenotype of nasopharyngeal carcinoma.

  • Zifeng Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Mechanism for the malignant phenotype of nasopharyngeal carcinoma (NPC) remains poorly understood. Epstein-Barr virus (EBV) consistently appears in nearly all malignant NPC patient samples, suggesting the strong etiological link between the malignant phenotype and EBV infection. Here we found that the EBV-encoded latent membrane protein (LMP1) enhanced cell growth, motility, invasion and xenograft tumor growth of NPC. RNA-seq profiling analysis of LMP1-positive NPC patient tissues indicated that widespread gene repression contributed to malignant phenotype of NPC. The transcription factor binding site (TFBS) enrichment analysis indicated a subset of transcription factors including ATOH8, a novel transcript factor which belongs to the basic helix-loop-helix (bHLH) gene family inversely enriched in promoters of up-regulated genes and down-regulated genes. Importantly, the expression of ATOH8 was suppressed in both immortalized normal nasopharyngeal epithelial cells (NPEC) and NPC cells with LMP1 overexpression. The Real-Time PCR and Western Blot assays indicated that ATOH8 decreased expression in NPC cell lines and patient samples. Moreover, by gain- or loss-of-function assays, we demonstrated that ATOH8 inhibition promoted malignant phenotype, whereas ATOH8 restoration reversed malignant phenotype of NPC. Finally, we demonstrated that LMP1 inhibited ATOH8 expression by epigenetically impairing the occupancy of activating H3K4me3 and enhancing the occupancy of repressive H3K27me3 on ATOH8 promoter. Collectively, our study uncovered the occurrence of malignant phenotype of NPC induced by EBV infection and characterized a novel bHLH transcription factor ATOH8 as a new downstream target of LMP1.


Reciprocal regulation of Abl kinase by Crk Y251 and Abi1 controls invasive phenotypes in glioblastoma.

  • Sushil Kumar‎ et al.
  • Oncotarget‎
  • 2015‎

Crk is the prototypical member of a class of Src homology 2 (SH2) and Src homology 3 (SH3) domain-containing adaptor proteins that positively regulate cell motility via the activation of Rac1 and, in certain tumor types such as GBM, can promote cell invasion and metastasis by mechanisms that are not well understood. Here we demonstrate that Crk, via its phosphorylation at Tyr251, promotes invasive behavior of tumor cells, is a prominent feature in GBM, and correlating with aggressive glioma grade IV staging and overall poor survival outcomes. At the molecular level, Tyr251 phosphorylation of Crk is negatively regulated by Abi1, which competes for Crk binding to Abl and attenuates Abl transactivation. Together, these results show that Crk and Abi1 have reciprocal biological effects and act as a molecular rheostat to control Abl activation and cell invasion. Finally, these data suggest that Crk Tyr251 phosphorylation regulate invasive cell phenotypes and may serve as a biomarker for aggressive GBM.


Hydrazinobenzoylcurcumin inhibits androgen receptor activity and growth of castration-resistant prostate cancer in mice.

  • Min Wu‎ et al.
  • Oncotarget‎
  • 2015‎

There is a critical need for therapeutic agents that can target the amino-terminal domain (NTD) of androgen receptor (AR) for the treatment of castration-resistant prostate cancer (CRPC). Calmodulin (CaM) binds to the AR NTD and regulates AR activity. We discovered that Hydrazinobenzoylcurcumin (HBC), which binds exclusively to CaM, inhibited AR activity. HBC abrogated AR interaction with CaM, suppressed phosphorylation of AR Serine81, and blocked the binding of AR to androgen-response elements. RNA-Seq analysis identified 57 androgen-regulated genes whose expression was significantly (p ≤ 0.002) altered in HBC treated cells as compared to controls. Oncomine analysis revealed that genes repressed by HBC are those that are usually overexpressed in prostate cancer (PCa) and genes stimulated by HBC are those that are often down-regulated in PCa, suggesting a reversing effect of HBC on androgen-regulated gene expression associated with PCa. Ingenuity Pathway Analysis revealed a role of HBC affected genes in cellular functions associated with proliferation and survival. HBC was readily absorbed into the systemic circulation and inhibited the growth of xenografted CRPC tumors in nude mice. These observations demonstrate that HBC inhibits AR activity by targeting the AR NTD and suggest potential usefulness of HBC for effective treatment of CRPC.


BTG1 expression correlates with pathogenesis, aggressive behaviors and prognosis of gastric cancer: a potential target for gene therapy.

  • Hua-chuan Zheng‎ et al.
  • Oncotarget‎
  • 2015‎

Here, we found that BTG1 overexpression inhibited proliferation, migration and invasion, induced G2/M arrest, differentiation, senescence and apoptosis in BGC-823 and MKN28 cells (p < 0.05). BTG1 transfectants showed a higher mRNA expression of Cyclin D1 and Bax, but a lower mRNA expression of cdc2, p21, mTOR and MMP-9 than the control and mock (p < 0.05). After treated with cisplatin, MG132, paclitaxel and SAHA, both BTG1 transfectants showed lower mRNA viability and higher apoptosis than the control in both time- and dose-dependent manners (p < 0.05) with the hypoexpression of chemoresistance-related genes (slug, CD147, GRP78, GRP94, FBXW7 TOP1, TOP2 and GST-π). BTG1 expression was restored after 5-aza-2'-deoxycytidine treatment in gastric cancer cells. BTG1 expression was statistically lower in gastric cancer than non-neoplastic mucosa and metastatic cancer in lymph node (p < 0.05). BTG1 expression was positively correlated with depth of invasion, lymphatic and venous invasion, lymph node metastasis, TNM staging and worse prognosis (p < 0.05). The diffuse-type carcinoma showed less BTG1 expression than intestinal- and mixed-type ones (p < 0.05). BTG1 overexpression suppressed tumor growth and lung metastasis of gastric cancer cells by inhibiting proliferation, enhancing autophagy and apoptosis in xenograft models. It was suggested that down-regulated BTG1 expression might promote gastric carcinogenesis partially due to its promoter methylation. BTG1 overexpression might reverse the aggressive phenotypes and be employed as a potential target for gene therapy of gastric cancer.


A comparative pharmacokinetic study of PARP inhibitors demonstrates favorable properties for niraparib efficacy in preclinical tumor models.

  • Kaiming Sun‎ et al.
  • Oncotarget‎
  • 2018‎

Niraparib is an orally bioavailable and selective poly (ADP-ribose) polymerase (PARP)-1/-2 inhibitor approved for maintenance treatment of both BRCA mutant (mut) and BRCA wildtype (wt) adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancers who have demonstrated a complete or partial response to platinum-based chemotherapy. In patients without germline BRCA mutations (non-gBRCAmut), niraparib improved progression-free survival (PFS) by 5.4 months, whereas another PARP inhibitor (PARPi) olaparib supplied only 1.9 months of improvement in a similar patient population. Previous studies revealed higher cell membrane permeability and volume of distribution (VD) as unique features of niraparib in comparison to other PARPi including olaparib. Here, we explore the potential correlation of these pharmacokinetic properties to preclinical antitumor effects in BRCAwt tumors. Our results show that at steady state, tumor exposure to niraparib is 3.3 times greater than plasma exposure in tumor xenograft mouse models. In comparison, the tumor exposure to olaparib is less than observed in plasma. In addition, niraparib crosses the blood-brain barrier and shows good sustainability in the brain, whereas sustained brain exposure to olaparib is not observed in the same models. Consistent with its favorable tumor and brain distribution, niraparib achieves more potent tumor growth inhibition than olaparib in BRCAwt models and an intracranial tumor model at maximum tolerated doses (MTD). These findings demonstrate favorable pharmacokinetic profiles and potent antitumor effects of niraparib in BRCAwt tumors, consistent with its broader clinical effect in patients with both BRCAmut and BRCAwt tumors.


Impact of diabetes-related gene polymorphisms on the clinical characteristics of type 2 diabetes Chinese Han population.

  • Jing Li‎ et al.
  • Oncotarget‎
  • 2016‎

We investigated the correlation between type 2 diabetes (T2D)-related genes and the clinical characteristics of T2D in the Chinese Han population. Our study included 319 patients and 387 controls. Age, gender, clinical features, medications intake and biochemical blood profiles were analyzed. Genotyping was performed on a total of 18 single nucleotide polymorphisms previously reported to be associated with T2D. Our analyses revealed that the CT genotype of ARHGAP22 rs4838605 is associated with T2D risk. Upon analyzing the subjects' clinical characteristics, we found that for rs2811893, the TT genotype correlated with high creatinine levels, while the AA genotype of rs17045754 and the TT genotype of rs4838605 correlated with elevated triglyceride levels. In addition, the AA genotype of rs17376456 and the TT genotype of rs6214 (p = 0.006) correlated with elevated hemoglobin A1c levels. Lastly, those carrying the TT genotype of rs7772697 and the CA genotype of rs3918227 exhibited higher mean body mass index and Cystatin C than controls. Our results showing that the ARHGAP22 gene is associated with an increased risk of T2D, and that seven SNPs in MYSM1, PLXDC2, ARHGAP22 and HS6ST3 promote T2D progression and could help predict the clinical course of T2D in patients at risk.


EglN2 contributes to triple negative breast tumorigenesis by functioning as a substrate for the FBW7 tumor suppressor.

  • Mamoru Takada‎ et al.
  • Oncotarget‎
  • 2017‎

EglN2 contributes to ERα-positive breast tumorigenesis by acting as an estrogen-inducible gene. However, the detailed molecular mechanism(s) underlying the post-transcriptional regulation of EglN2 and its potential role in Triple Negative Breast Cancer (TNBC) remains largely unclear. By using C3Tag transgenic mice and tumor-derived C3Tag cell line, here we report that EglN2 contributes to TNBC tumor progression and genetic knockout of EglN2 improves C3Tag mice survival from tumor progression. Mechanistically, we further show that FBW7, an E3 ligase complex component that is frequently downregulated in TNBC, negatively regulates EglN2 protein stability. As such, depletion of FBW7 in breast cell lines leads to upregulation of EglN2 and other canonical FBW7 substrates. Conversely, FBW7 overexpression leads to EglN2 downregulation in a GSK3β-dependent manner. Furthermore, we identified some potential serine or threonine residues on the C-terminal of EglN2 that may mediate its binding and potential regulation by FBW7. Together, our study reveals that EglN2 might act as an FBW7 ubiquitin ligase substrate contributing to TNBC.


Sensitizing leukemia stem cells to NF-κB inhibitor treatment in vivo by inactivation of both TNF and IL-1 signaling.

  • Jing Li‎ et al.
  • Oncotarget‎
  • 2017‎

We previously reported that autocrine TNF-α (TNF) is responsible for JNK pathway activation in a subset of acute myeloid leukemia (AML) patient samples, providing a survival/proliferation signaling parallel to NF-κB in AML stem cells (LSCs). In this study, we report that most TNF-expressing AML cells (LCs) also express another pro-inflammatory cytokine, IL1β, which acts in a parallel manner. TNF was produced primarily by LSCs and leukemic progenitors (LPs), whereas IL1β was mainly produced by partially differentiated leukemic blasts (LBs). IL1β also stimulates an NF-κB-independent pro-survival and proliferation signal through activation of the JNK pathway. We determined that co-inhibition of signaling stimulated by both TNF and IL1β synergizes with NF-κB inhibition in eliminating LSCs both ex vivo and in vivo. Our studies show that such treatments are most effective in M4/5 subtypes of AML.


Oleic acid stimulates HC11 mammary epithelial cells proliferation and mammary gland development in peripubertal mice through activation of CD36-Ca2+ and PI3K/Akt signaling pathway.

  • Yingying Meng‎ et al.
  • Oncotarget‎
  • 2018‎

This study aimed to investigate the effects of oleic acid (OA), a monounsaturated fatty acid, on HC11 mammary epithelial cells proliferation and peripubertal mammary gland development and explore the underlying mechanisms. HC11 cells and C57BL/6J mice were treated with OA. HC11 proliferation, peripubertal mammary gland development, and the involvement of CD36 and PI3K/Akt were assessed. In vitro, 100 μM OA significantly promoted HC11 proliferation by increasing Cyclin D1/3 and PCNA expression and decreasing p21 expression. Meanwhile, OA enhanced CD36 expression, elevated [Ca2+]i and activated PI3K/Akt signaling pathway. However, knockdown of CD36, chelation of [Ca2+]i or inhibition of PI3K eliminated the OA-induced promotion of HC11 proliferation and change in proliferative markers expression. In vivo, peripubertal exposure to diet containing 2% OA stimulated mammary duct development, with increased terminal duct end (TDE) and ductal branch. Moreover, dietary OA increased the serum levels of IGF-1 and E2, enhanced the expression of CD36 and Cyclin D1, and activated PI3K/Akt pathway in mammary glands. In conclusion, OA stimulated HC11 cells proliferation and mammary gland development in peripubertal mice, which was associated with activation of CD36-[Ca2+]i and PI3K/Akt signaling pathway. These data provided new insights into the stimulation of mammary gland development by dietary oleic acid.


Reduced vasorin enhances angiotensin II signaling within the aging arterial wall.

  • Gianfranco Pintus‎ et al.
  • Oncotarget‎
  • 2018‎

The glycosylated protein vasorin physically interacts with the transforming growth factor-beta1 (TGF-β1) and functionally attenuates its fibrogenic signaling in the vascular smooth muscle cells (VSMCs) of the arterial wall. Angiotensin II (Ang II) amplifies TGF-β1 activation in the VSMCs of the arterial wall with aging. In this study, we hypothesized that a reduced expression of the protein vasorin plays a contributory role in magnifying Ang II-associated fibrogenic signaling in the VSMCs of the arterial wall with aging. The current study shows that vasorin mRNA and protein expression were significantly decreased both in aortic wall and VSMCs from old (30 mo) vs. young (8 mo) FXBN rats. Exposing young VSMCs to Ang II reduced vasorin protein expression to the levels of old untreated cells while treating old VSMCs with the Ang II type AT1 receptor antagonist Losartan upregulated vasorin protein expression up to the levels of young. The physical interaction between vasorin and TGF-β1 was significantly decreased in old vs. young VSMCs. Further, exposing young VSMCs to Ang II increased the levels of matrix metalloproteinase type II (MMP-2) activation and TGF-β1 downstream molecules p-SMAD-2/3 and collagen type I production up to the levels of old untreated VSMCs, and these effects were substantially inhibited by overexpressing vasorin. Administration of Ang II to young rats (8 mo) for 28 days via an osmotic minipump markedly reduced the expression of vasorin. Importantly, vasorin protein was effectively cleaved by activated MMP-2 both in vitro and in vivo. Administration of the MMP inhibitor, PD 166793, for 6 mo to young adult (18 mo) via a daily gavage markedly increased levels of vasorin in the aortic wall. Thus, reduced vasorin amplifies Ang II profibrotic signaling via an activation of MMP-2 in VSMCs within the aging arterial wall.


Aberrant chimeric RNA GOLM1-MAK10 encoding a secreted fusion protein as a molecular signature for human esophageal squamous cell carcinoma.

  • Hao Zhang‎ et al.
  • Oncotarget‎
  • 2013‎

It is increasingly recognized that chimeric RNAs may exert a novel layer of cellular complexity that contributes to oncogenesis and cancer progression, and could be utilized as molecular biomarkers and therapeutic targets. To date yet no fusion chimeric RNAs have been identified in esophageal cancer, the 6th most frequent cause of cancer death in the world. While analyzing the expression of 32 recurrent cancer chimeric RNAs in esophageal squamous cell carcinoma (ESCC) from patients and cancer cell lines, we identified GOLM1-MAK10, as a highly cancer-enriched chimeric RNA in ESCC. In situ hybridization revealed that the expression of the chimera is largely restricted to cancer cells in patient tumors, and nearly undetectable in non-neoplastic esophageal tissue from normal subjects. The aberrant chimera closely correlated with histologic differentiation and lymph node metastasis. Furthermore, we demonstrate that chimera GOLM1-MAK10 encodes a secreted fusion protein. Mechanistic studies reveal that GOLM1-MAK10 is likely derived from transcription read-through/splicing rather than being generated from a fusion gene. Collectively, these findings provide novel insights into the molecular mechanism involved in ESCC and provide a novel potential target for future therapies. The secreted fusion protein translated from GOLM1-MAK10 could also serve as a unique protein signature detectable by standard non-invasive assays. These observations are critical as there is no clinically useful molecular signature available for detecting this deadly disease or monitoring the treatment response.


Metformin potentiates anti-tumor effect of resveratrol on pancreatic cancer by down-regulation of VEGF-B signaling pathway.

  • Mengmeng Zhu‎ et al.
  • Oncotarget‎
  • 2016‎

Our previous study showed that resveratrol (RSV) exhibited not only anti-tumor effect, but also had potential tumor promotion effect on pancreatic cancer (Paca) cells through up-regulation of VEGF-B. We determined whether metformin (MET) could potentiate the anti-tumor effect of RSV on PaCa in this study. Combination of RSV (100 μmol/l) and MET (20 mmol/l) significantly inhibited tumor growth and increased apoptosis of human PaCa in comparison with RSV or MET alone treatment in PaCa cell lines (Miapaca-2, Panc-1 and Capan-2). Combination of RSV (60 mg/kg, gavage) and MET (250 mg/kg, i.p.) significantly inhibited tumor growth in PaCa bearing nude mice (subcutaneous injection of 5 × 106 Miapaca-2 cells) in comparison with RSV or MET alone treatment on day 40. Combination treatment significantly decreased VEGF-B expression and inhibited activity of GSK-3β when compared to the RSV alone treatment. Up-regulated expressions of Bax, cleaved caspase-3 and down-regulated expression of Bcl-2 were observed in RSV+ MET group in comparison with RSV group either in vitro or in vivo. Inhibition of VEGF-B by VEGF-B small interfering RNA (siRNA) mimicked the effects of MET on PaCa cells. These results suggested that MET, a potential pharmacological inhibitor of VEGF-B signaling pathway, potentiated the anti-tumor effect of RSV on PaCa, and combination of MET and RSV would be a promising modality for clinical PaCa therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: