Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 15,077 papers

Application of the S-score algorithm for analysis of oligonucleotide microarrays.

  • Robnet T Kerns‎ et al.
  • Methods (San Diego, Calif.)‎
  • 2003‎

In the past several years, oligonucleotide microarrays have emerged as a widely used tool for the simultaneous, non-biased measurement of expression levels for thousands of genes. Several challenges exist in successfully utilizing this biotechnology; principal among these is analysis of microarray data. An experiment to measure differential gene expression can consist of a dozen microarrays, each consisting of over a hundred thousand data points. Previously, we have described the use of a novel algorithm for analyzing oligonucleotide microarrays and assessing changes in gene expression. This algorithm describes changes in expression in terms of the statistical significance (S-score) of change, which combines signals detected by multiple probe pairs according to an error model characteristic of oligonucleotide arrays. Software is available that simplifies the use of the application of this algorithm so that it may be applied to improving the analysis of oligonucleotide microarray data. The application of this method to problems of the central nervous system is discussed.


Assessment of immunoreactive synthetic peptides from the structural proteins of severe acute respiratory syndrome coronavirus.

  • Jingqiang Wang‎ et al.
  • Clinical chemistry‎
  • 2003‎

The widespread threat of severe acute respiratory syndrome (SARS) to human life has spawned challenges to develop fast and accurate analytical methods for its early diagnosis and to create a safe antiviral vaccine for preventive use. Consequently, we thoroughly investigated the immunoreactivities with patient sera of a series of synthesized peptides from SARS-coronavirus structural proteins.


MX1013, a dipeptide caspase inhibitor with potent in vivo antiapoptotic activity.

  • Wu Yang‎ et al.
  • British journal of pharmacology‎
  • 2003‎

1. Caspases play a critical role in apoptosis, and are considered to be key targets for the design of cytoprotective drugs. As part of our antiapoptotic drug-discovery effort, we have synthesized and characterized Z-VD-fmk, MX1013, as a potent, irreversible dipeptide caspase inhibitor. 2. MX1013 inhibits caspases 1, 3, 6, 7, 8, and 9, with IC50 values ranging from 5 to 20 nm. MX1013 is selective for caspases, and is a poor inhibitor of noncaspase proteases, such as cathepsin B, calpain I, or Factor Xa (IC50 values >10 microm). 3. In several cell culture models of apoptosis, including caspase 3 processing, PARP cleavage, and DNA fragmentation, MX1013 is more active than tetrapeptide- and tripeptide-based caspase inhibitors, and blocked apoptosis at concentrations as low as 0.5 microm. 4. MX1013 is more aqueous soluble than tripeptide-based caspase inhibitors such as Z-VAD-fmk. 5. At a dose of 1 mg kg-1 i.v., MX1013 prevented liver damage and the lethality caused by Fas death receptor activation in the anti-Fas mouse-liver apoptosis model, a widely used model of liver failure. 6. At a dose of 20 mg kg-1 (i.v. bolus) followed by i.v. infusion for 6 or 12 h, MX1013 reduced cortical damage by approximately 50% in a model of brain ischemia/reperfusion injury. 7. At a dose of 20 mg kg-1 (i.v. bolus) followed by i.v. infusion for 12 h, MX1013 reduced heart damage by approximately 50% in a model of acute myocardial infarction. 8. Based on these studies, we conclude that MX1013, a dipeptide pan-caspase inhibitor, has a good combination of in vitro and in vivo properties. It has the ability to protect cells from a variety of apoptotic insults, and is systemically active in three animal models of apoptosis, including brain ischemia.


In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor.

  • Zhenggang Zhang‎ et al.
  • NeuroImage‎
  • 2004‎

Using magnetic resonance imaging (MRI), we described a method for noninvasively tracking grafted neural progenitor cells and bone marrow stromal cells (MSCs) in brain tumor of the rat. Neural progenitor cells and MSCs were labeled with lipophilic dye-coated superparamagnetic particles. The labeled neural progenitor cells and MSCs were transplanted to rats via the cisterna magna and a tail vein, respectively, 1 week after 9L-gliosarcoma cell implantation. Three-dimensional (3D) gradient echo and contrast agent images revealed dynamic migration of adult neural progenitor cells and MSCs detected by loss of MRI signals towards tumor mass and infiltrated tumor cells. Prussian blue staining and fluorescent microscope analysis showed that grafted cells targeted tumor cells and areas with grafted cells corresponded to areas with loss of MRI signals. These results demonstrate that the MRI technique provides a sensitive method for in vivo assessment of grafted cells targeting tumor mass and infiltrated tumor cells and that adult neural progenitor cells and MSCs can target tumor aggregates in the brain.


Sequential metabolism of 7-dehydrocholesterol to steroidal 5,7-dienes in adrenal glands and its biological implication in the skin.

  • Andrzej T Slominski‎ et al.
  • PloS one‎
  • 2009‎

Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3betaHSD for 7DHP (V(m)/K(m)) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC-->22(OH)7DHC-->20,22(OH)(2)7DHC-->7DHP, with potential further metabolism of 7DHP mediated by 3betaHSD or CYP17, depending on mammalian species. The 5-7 dienal intermediates of the pathway can be a source of biologically active vitamin D3 derivatives after delivery to or production in the skin, an organ intermittently exposed to solar radiation.


RNAi-mediated inhibition of MSP58 decreases tumour growth, migration and invasion in a human glioma cell line.

  • Wei Lin‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

MSP58, a 58-kD nuclear microspherule protein, is an evolutionarily conserved nuclear protein implicated in the regulation of gene transcription as well as in malignant transformation. An analysis of mRNA expression by real-time PCR revealed that MSP58 was significantly up-regulated in 29% of high-grade glioblastoma tissues as well as in four glioblastoma cell lines. In the present study, we further evaluated the biological functions of MSP58 in U251 glioma cell proliferation, migration, invasion and tumour growth in vivo by specific MSP58 knockdown using short hairpin RNA (shRNA). We found that MSP58 depletion inhibited glioma cell growth, primarily by inducing cell cycle arrest rather than apoptosis. MSP58 depletion also decreased the invasive capability of glioma cells and anchorage-independent colony formation in soft agar. Moreover, suppression of MSP58 expression significantly impaired the growth of glioma xenografts in nude mice. Finally, a cell cycle-associated gene array revealed potential molecular mechanisms contributing to cell cycle arrest in MSP58-depleted glioma cells. In summary, our data highlight the importance of MSP58 in glioma progression and provided a biological basis for MSP58 as a novel candidate target for treatment of glioma.


Model-based analysis of ChIP-Seq (MACS).

  • Yong Zhang‎ et al.
  • Genome biology‎
  • 2008‎

We present Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer. MACS empirically models the shift size of ChIP-Seq tags, and uses it to improve the spatial resolution of predicted binding sites. MACS also uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions. MACS compares favorably to existing ChIP-Seq peak-finding algorithms, and is freely available.


Identification of glutathione S-transferase pi as a protein involved in Parkinson disease progression.

  • Min Shi‎ et al.
  • The American journal of pathology‎
  • 2009‎

Parkinson disease (PD) typically affects the cortical regions during the later stages of disease, with neuronal loss, gliosis, and formation of diffuse cortical Lewy bodies in a significant portion of patients with dementia. To identify novel proteins involved in PD progression, we prepared synaptosomal fractions from the frontal cortices of pathologically verified PD patients at different stages along with age-matched controls. Protein expression profiles were compared using a robust quantitative proteomic technique. Approximately 100 proteins displayed significant differences in their relative abundances between PD patients at various stages and controls; three of these proteins were validated using independent techniques. One of the confirmed proteins, glutathione S-transferase Pi, was further investigated in cellular models of PD, demonstrating that its level was intimately associated with several critical cellular processes that are directly related to neurodegeneration in PD. These results have, for the first time, suggested that the levels of glutathione S-transferase Pi may play an important role in modulating the progression of PD.


Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc.

  • Feng-Hou Gao‎ et al.
  • BMC cancer‎
  • 2010‎

Oridonin, a tetracycline diterpenoid compound, has the potential antitumor activities. Here, we evaluate the antitumor activity and action mechanisms of oridonin in colorectal cancer.


MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling.

  • Jian Liang‎ et al.
  • The Journal of experimental medicine‎
  • 2010‎

The intensity and duration of macrophage-mediated inflammatory responses are controlled by proteins that modulate inflammatory signaling pathways. MCPIP1 (monocyte chemotactic protein-induced protein 1), a recently identified CCCH Zn finger-containing protein, plays an essential role in controlling macrophage-mediated inflammatory responses. However, its mechanism of action is poorly understood. In this study, we show that MCPIP1 negatively regulates c-Jun N-terminal kinase (JNK) and NF-κB activity by removing ubiquitin moieties from proteins, including TRAF2, TRAF3, and TRAF6. MCPIP1-deficient mice spontaneously developed fatal inflammatory syndrome. Macrophages and splenocytes from MCPIP1(-/-) mice showed elevated expression of inflammatory gene expression, increased JNK and IκB kinase activation, and increased polyubiquitination of TNF receptor-associated factors. In vitro assays directly demonstrated the deubiquitinating activity of purified MCPIP1. Sequence analysis together with serial mutagenesis defined a deubiquitinating enzyme domain and a ubiquitin association domain in MCPIP1. Our results indicate that MCPIP1 is a critical modulator of inflammatory signaling.


Population genetics of foxtail millet and its wild ancestor.

  • Chunfang Wang‎ et al.
  • BMC genetics‎
  • 2010‎

Foxtail millet (Setaria italica (L.) P. Beauv.), one of the most ancient domesticated crops, is becoming a model system for studying biofuel crops and comparative genomics in the grasses. However, knowledge on the level of genetic diversity and linkage disequilibrium (LD) is very limited in this crop and its wild ancestor, green foxtail (Setaria viridis (L.) P. Beauv.). Such information would help us to understand the domestication process of cultivated species and will allow further research in these species, including association mapping and identification of agricultural significant genes involved in domestication.


Potent suppression of vascular smooth muscle cell migration and human neointimal hyperplasia by KV1.3 channel blockers.

  • Alex Cheong‎ et al.
  • Cardiovascular research‎
  • 2011‎

The aim of the study was to determine the potential for K(V)1 potassium channel blockers as inhibitors of human neoinitimal hyperplasia.


A stem cell-based tool for small molecule screening in adipogenesis.

  • Jie Qin‎ et al.
  • PloS one‎
  • 2010‎

Techniques for small molecule screening are widely used in biological mechanism study and drug discovery. Here, we reported a novel adipocyte differentiation assay for small molecule selection, based on human mesenchymal stem cells (hMSCs) transduced with fluorescence reporter gene driven by adipogenic specific promoter--adipocyte Protein 2 (aP2; also namely Fatty Acid Binding Protein 4, FABP4). During normal adipogenic induction as well as adipogenic inhibition by Ly294002, we confirmed that the intensity of green fluorescence protein corresponded well to the expression level of aP2 gene. Furthermore, this variation of green fluorescence protein intensity can be read simply through fluorescence spectrophotometer. By testing another two small molecules in adipogenesis--Troglitazone and CHIR99021, we proved that this is a simple and sensitive method, which could be applied in adipocyte biology, drug discovery and toxicological study in the future.


Silkworm coatomers and their role in tube expansion of posterior silkgland.

  • Qiao Wang‎ et al.
  • PloS one‎
  • 2010‎

Coat protein complex I (COPI) vesicles, coated by seven coatomer subunits, are mainly responsible for Golgi-to-ER transport. Silkworm posterior silkgland (PSG), a highly differentiated secretory tissue, secretes fibroin for silk production, but many physiological processes in the PSG cells await further investigation.


α-TEA-induced death receptor dependent apoptosis involves activation of acid sphingomyelinase and elevated ceramide-enriched cell surface membranes.

  • Jing Li‎ et al.
  • Cancer cell international‎
  • 2010‎

Alpha-tocopherol ether-linked acetic acid (α-TEA), an analog of vitamin E (RRR-alpha-tocopherol), is a potent and selective apoptosis-inducing agent for human cancer cells in vivo and in vitro. α-TEA induces apoptosis via activation of extrinsic death receptors Fas (CD95) and DR5, JNK/p73/Noxa pathways, and suppression of anti-apoptotic mediators Akt, ERK, c-FLIP and survivin in breast, ovarian and prostate cancer cells.


Oncogenic role of the chromobox protein CBX7 in gastric cancer.

  • Xiao-Wei Zhang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2010‎

Chromobox 7 (CBX7) is a Polycomb family protein that extends the lifespan of normal human cells via downregulating the expression of INK4a/ARF tumor suppressor locus. It was found that CBX7 expression was upregulated in lymphoma, but downregulated in some other human malignancies. The role of CBX7 in most types of cancer is still not clear. The purpose of this study is to investigate the role of CBX7 in gastric cancer.


A novel mutation in GJA8 causing congenital cataract-microcornea syndrome in a Chinese pedigree.

  • Shanshan Hu‎ et al.
  • Molecular vision‎
  • 2010‎

To identify the underlying genetic defect in a four-generation family of Chinese origin with autosomal dominant congenital cataract-microcornea syndrome (CCMC).


Expression of TLR4-MyD88 and NF-κB in the iris during endotoxin-induced uveitis.

  • Shang Li‎ et al.
  • Mediators of inflammation‎
  • 2010‎

To observe the expression of Toll-like receptor-4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor kappa B p65 (NF-κB p65) in iris tissue during endotoxin-induced uveitis (EIU) and evaluate the significance of these factors in uveitis.


An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of hand foot and mouth disease in Fuyang city of China.

  • Yan Zhang‎ et al.
  • Virology journal‎
  • 2010‎

Hand, foot and mouth disease (HFMD), a common contagious disease that usually affects children, is normally mild but can have life-threatening manifestations. It can be caused by enteroviruses, particularly Coxsackieviruses and human enterovirus 71 (HEV71) with highly variable clinical manifestations. In the spring of 2008, a large, unprecedented HFMD outbreak in Fuyang city of Anhui province in the central part of southeastern China resulted in a high aggregation of fatal cases. In this study, epidemiologic and clinical investigations, laboratory testing, and genetic analyses were performed to identify the causal pathogen of the outbreak. Of the 6,049 cases reported between 1 March and 9 May of 2008, 3023 (50%) were hospitalized, 353 (5.8%) were severe and 22 (0.36%) were fatal. HEV71 was confirmed as the etiological pathogen of the outbreak. Phylogenetic analyses of entire VP1 capsid protein sequence of 45 Fuyang HEV71 isolates showed that they belong to C4a cluster of the C4 subgenotype. In addition, genetic recombinations were found in the 3D region (RNA-dependent RNA polymerase, a major component of the viral replication complex of the genome) between the Fuyang HEV71 strain and Coxsackievirus A16 (CV-A16), resulting in a recombination virus. In conclusion, an emerging recombinant HEV71 was responsible for the HFMD outbreak in Fuyang City of China, 2008.


A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway.

  • Limei Qin‎ et al.
  • BMC genomics‎
  • 2010‎

MicroRNAs (miRNAs) are a large class of tiny non-coding RNAs (approximately 22-24 nt) that regulate diverse biological processes at the posttranscriptional level by controlling mRNA stability or translation. As a molecular switch, the canonical Wnt/beta-catenin signaling pathway should be suppressed during the adipogenesis; However, activation of this pathway leads to the inhibition of lipid depots formation. The aim of our studies was to identify miRNAs that might be involved in adipogenesis by modulating WNT signaling pathway. Here we established two types of cell model, activation and repression of WNT signaling, and investigated the expression profile of microRNAs using microarray assay.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: