Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Pan-cancer analysis of the PDE4DIP gene with potential prognostic and immunotherapeutic values in multiple cancers including acute myeloid leukemia.

  • Qi Li‎ et al.
  • Open medicine (Warsaw, Poland)‎
  • 2023‎

Phosphodiesterase 4D interacting protein (PDE4DIP) interacts with cAMP-specific phosphodiesterase 4D and its abnormal expression promotes the development of hematological malignancies, breast cancer, and pineal cell carcinoma. However, there is currently no systematic pan-cancer analysis of the association between PDE4DIP and various cancers. Thus, this study aimed to elucidate the potential functions of PDE4DIP in various cancers. Based on the multiple public databases and online websites, we conducted comprehensive analyses for PDE4DIP in various cancers, including differential expression, prognosis, genetic variation, DNA methylation, and immunity. We thoroughly analyzed the specific role of PDE4DIP in acute myeloid leukemia (LAML). The results indicated that there were differences in PDE4DIP expression in cancers, and in kidney chromophobe, LAML, pheochromocytoma and paraganglioma, thymoma, and uveal melanoma, PDE4DIP had potential prognostic value. PDE4DIP expression was also correlated with genetic variation, DNA methylation, immune cell infiltration, and immune-related genes in cancers. Functional enrichment analysis showed that PDE4DIP was mainly related to immune-related pathways in cancers, and in LAML, PDE4DIP was mainly related to immunoglobulin complexes, T-cell receptor complexes, and immune response regulatory signaling pathways. Our study systematically revealed for the first time the potential prognostic and immunotherapeutic value of PDE4DIP in various cancers, including LAML.


Prognostic role of SIRT6 in gastrointestinal cancers: a meta-analysis.

  • Li Shi‎ et al.
  • Open medicine (Warsaw, Poland)‎
  • 2020‎

Sirtuin 6 (SIRT6) plays a critical role in the progression and development of gastrointestinal cancers. However, the association between SIRT6 expression and clinicopathological parameters and prognosis in gastrointestinal cancer patients remains inconclusive. Consequently, we conducted this meta-analysis to evaluate the importance of SIRT6 expression in various types of gastrointestinal cancers. PubMed, EMBASE, and Web of Science databases were systematically searched to screen the relevant literature. The reported or estimated hazard ratio (HR) and odds ratio (OR) and their corresponding 95% confidence interval (CI) were pooled to assess the strength of the association. Nine studies involving 867 patients were included in the meta-analysis. Overall analysis showed that high SIRT6 expression was related to better overall survival in gastrointestinal cancers (HR = 0.62, 95% CI = 0.47-0.82). High SIRT6 expression was also related to a favorable tumor node metastasis (TNM) stage (OR = 0.44, 95% CI = 0.28-0.70) among gastrointestinal cancer patients. Our meta-analysis revealed that high SIRT6 expression might be a potential biomarker predicting better prognosis in gastrointestinal cancers, which may offer options for gastrointestinal cancer treatment.


miR-101-3p sensitizes non-small cell lung cancer cells to irradiation.

  • Zhonghui Li‎ et al.
  • Open medicine (Warsaw, Poland)‎
  • 2020‎

Recent studies have revealed that microRNAs regulate radiosensitivity of non-small cell lung cancer (NSCLC). The aim of this study was to investigate whether miR-101-3p is correlated with radiosensitivity of NSCLC. According to our results, miR-101-3p was downregulated in NSCLC tissues and cell lines. Moreover, miR-101-3p was decreased in A549 cells' response to irradiation in a dose-dependent manner. Upregulation of miR-101-3p decreased survival fraction and colony formation rate and increased irradiation-induced apoptosis in irradiation-resistant cells, while miR-101-3p depletion had the opposite effects in irradiation-sensitive cells. Furthermore, mechanistic target of rapamycin (mTOR) is a target gene of miR-101-3p. The expressions of mTOR, p-mTOR, and p-S6 were curbed by overexpression of miR-101-3p in A549R cells, which was enhanced by repression of miR-101-3p in A549 cells. Intriguingly, elevation in mTOR abated miR-101-3p upregulation-induced increase in irradiation sensitivity in irradiation-resistant cell line. In contrast, rapamycin undermined miR-101-3p inhibitor-mediated reduction of irradiation sensitivity in irradiation-sensitive cell line. Besides, miR-101-3p overexpression enhanced the efficacy of radiation in an NSCLC xenograft mouse model. In conclusion, miR-101-3p sensitized A549 cells to irradiation via inhibition of mTOR-signaling pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: