Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 79 papers

Platelet Activation and Thrombus Formation over IgG Immune Complexes Requires Integrin αIIbβ3 and Lyn Kinase.

  • Huiying Zhi‎ et al.
  • PloS one‎
  • 2015‎

IgG immune complexes contribute to the etiology and pathogenesis of numerous autoimmune disorders, including heparin-induced thrombocytopenia, systemic lupus erythematosus, rheumatoid- and collagen-induced arthritis, and chronic glomerulonephritis. Patients suffering from immune complex-related disorders are known to be susceptible to platelet-mediated thrombotic events. Though the role of the Fc receptor, FcγRIIa, in initiating platelet activation is well understood, the role of the major platelet adhesion receptor, integrin αIIbβ3, in amplifying platelet activation and mediating adhesion and aggregation downstream of encountering IgG immune complexes is poorly understood. The goal of this investigation was to gain a better understanding of the relative roles of these two receptor systems in immune complex-mediated thrombotic complications. Human platelets, and mouse platelets genetically engineered to differentially express FcγRIIa and αIIbβ3, were allowed to interact with IgG-coated surfaces under both static and flow conditions, and their ability to spread and form thrombi evaluated in the presence and absence of clinically-used fibrinogen receptor antagonists. Although binding of IgG immune complexes to FcγRIIa was sufficient for platelet adhesion and initial signal transduction events, platelet spreading and thrombus formation over IgG-coated surfaces showed an absolute requirement for αIIbβ3 and its ligands. Tyrosine kinases Lyn and Syk were found to play key roles in IgG-induced platelet activation events. Taken together, our data suggest a complex functional interplay between FcγRIIa, Lyn, and αIIbβ3 in immune complex-induced platelet activation. Future studies may be warranted to determine whether patients suffering from immune complex disorders might benefit from treatment with anti-αIIbβ3-directed therapeutics.


The Yellow Stripe-Like (YSL) Gene Functions in Internal Copper Transport in Peanut.

  • Jing Dai‎ et al.
  • Genes‎
  • 2018‎

Copper (Cu) is involved in fundamental biological processes for plant growth and development. However, Cu excess is harmful to plants. Thus, Cu in plant tissues must be tightly regulated. In this study, we found that the peanut Yellow Stripe-Like family gene AhYSL3.1 is involved in Cu transport. Among five AhYSL genes, AhYSL3.1 and AhYSL3.2 were upregulated by Cu deficiency in peanut roots and expressed mainly in young leaves. A yeast complementation assay suggested that the plasma membrane-localized AhYSL3.1 was a Cu-nicotianamine complex transporter. High expression of AhYSL3.1 in tobacco and rice plants with excess Cu resulted in a low concentration of Cu in young leaves. These transgenic plants were resistant to excess Cu. The above results suggest that AhYSL3.1 is responsible for the internal transport of Cu in peanut.


4-Dimensional computed tomography analysis of clinical target volume displacement in adjuvant radiation of patients with gastric cancer and its implication on radiotherapy.

  • Jin Peng‎ et al.
  • Oncology letters‎
  • 2019‎

The present study aimed to accurately measure the displacement magnitude of the radiotherapy subsite target due to respiration, and to evaluate its implication on 4-dimensional computed tomography (4D-CT) in adjuvant radiation of gastric cancer. To investigate this, 10 patients with gastric cancer receiving adjuvant radiotherapy were enrolled. 4D-CT scans were performed on all patients and respiratory signals were recorded simultaneously. The clinical target volume (CTV) and 7 regions of interest (ROIs) were delineated in all phases of the CT imaging. The displacements of all ROIs in the cephalic-caudal, anterior-posterior and left-right directions were measured and analyzed. Two sets of plans based on planning target volume 3D (PTV3D) and PTV4D, were generated for each patient and PTV3Dcal was calculated by expanding the non-uniform margin on CTV3D according to the displacement analysis data. The dosimetric parameters and target volumes of the 3 radiotherapy treatment plans were compared. The displacement of the various ROIs varied widely. The mean PTV4D was smaller than the PTV3D and PTV3Dcal. Compared with Plan3D, Plan4D reduced the mean dose of radiation to the liver and left kidney by 23.2 and 43.5%, respectively. The liver volume receiving ≥30 Gy and the left kidney volume receiving ≥20 Gy were decreased by 10.8 and 29.7%, respectively. No differences were observed in the PTV coverage and protection of organs at risk (OARs) between Plan3Dcal and Plan4D. In conclusion, the breathing-induced displacement patterns of the subsite targets in patients with gastric cancer vary. The individualized CTV margins of expansion based on 4D-CT lead to a decrease PTV and radiation dose to OARs. The non-uniform margins in various directions should be considered as areas for further investigation.


Co-Production of Cellulose Nanocrystals and Fermentable Sugars Assisted by Endoglucanase Treatment of Wood Pulp.

  • Jing Dai‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2018‎

In this study, fermentable sugars and cellulose nanocrystals (CNCs) were co-produced from endoglucanase treatment of wood pulp, followed by acid hydrolysis. Enzymatic hydrolysis was performed using two endoglucanases differentiated by the presence or absence of a cellulose-binding domain (CBD). The enzyme with an intact CBD gave the higher glucan conversion (up to 14.1 ± 1.2 wt %) and improved the degree of crystallinity of the recovered wood pulp fiber (up to 83.0 ± 1.0%). Thus, this endoglucanase-assisted treatment successfully removed amorphous content from the original cellulosic feedstock. CNC recovery (16.9 ± 0.7 wt %) from the feedstock going into the acid hydrolysis was improved relative to untreated pulp (13.2 ± 0.6 wt %). The mass loss from enzymatic treatment did not cause a decrease in the CNC yield from the starting material. The characteristics of CNCs obtained through acid hydrolysis (with or without enzyme treatment of pulp) were analyzed using X-ray diffraction, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and differential scanning calorimetry as characterization techniques. The CNCs generated through acid hydrolysis of endoglucanase-treated wood pulp displayed comparable properties relative to those generated using untreated pulp. Thus, endoglucanase treatment can enable co-production of CNCs and sugars for biofuel fermentation.


Altered white matter microarchitecture in amyotrophic lateral sclerosis: A voxel-based meta-analysis of diffusion tensor imaging.

  • Feifei Zhang‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

The results of recent diffusion tensor imaging (DTI) studies on amyotrophic lateral sclerosis (ALS) are inconclusive and controversial. We performed a voxel-based meta-analysis to identify a statistical consensus among published DTI studies of altered white matter (WM) microarchitecture in ALS.


SIRT2 induces the checkpoint kinase BubR1 to increase lifespan.

  • Brian J North‎ et al.
  • The EMBO journal‎
  • 2014‎

Mice overexpressing the mitotic checkpoint kinase gene BubR1 live longer, whereas mice hypomorphic for BubR1 (BubR1(H/H)) live shorter and show signs of accelerated aging. As wild-type mice age, BubR1 levels decline in many tissues, a process that is proposed to underlie normal aging and age-related diseases. Understanding why BubR1 declines with age and how to slow this process is therefore of considerable interest. The sirtuins (SIRT1-7) are a family of NAD(+)-dependent deacetylases that can delay age-related diseases. Here, we show that the loss of BubR1 levels with age is due to a decline in NAD(+) and the ability of SIRT2 to maintain lysine-668 of BubR1 in a deacetylated state, which is counteracted by the acetyltransferase CBP. Overexpression of SIRT2 or treatment of mice with the NAD(+) precursor nicotinamide mononucleotide (NMN) increases BubR1 abundance in vivo. Overexpression of SIRT2 in BubR1(H/H) animals increases median lifespan, with a greater effect in male mice. Together, these data indicate that further exploration of the potential of SIRT2 and NAD(+) to delay diseases of aging in mammals is warranted.


BCL-2 inhibition impairs mitochondrial function and targets oral tongue squamous cell carcinoma.

  • Lei Xiong‎ et al.
  • SpringerPlus‎
  • 2016‎

To understand the role of Bcl-2 overexpression in oral tongue squamous cell carcinoma (OTSCC) patients and investigate the efficacy of targeting Bcl-2 in OTSCC.


Liver-X-receptor activator prevents homocysteine-induced production of IgG antibodies from murine B lymphocytes via the ROS-NF-kappaB pathway.

  • Lina Chang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

Our previous study showed that homosysteine (Hcy) promotes proliferation of mouse splenic B lymphocytes. In this study, we investigated whether Hcy could stimulate the production of IgG antibodies. Hcy significantly increased the production of IgG antibodies from resting B lymphocytes. B lymphocytes from ApoE-knockout mice with hyperhomocysteinemia showed elevated IgG secretion at either the basal Hcy level or in response to lipopolysaccharide. Hcy promoted reactive oxygen species (ROS) formation, and free radical scavengers, MnTMPyP decreased Hcy-induced IgG secretion. The inhibitor of NF-kappaB (MG132) also significantly reduced Hcy-induced IgG secretion. Furthermore, Hcy-induced formation of ROS, activation of NF-kappaB, and secretion of IgG could be inhibited by the liver-X-receptor (LXR) agonist T0901317. Thus, our data provide strong evidence that HHcy induces IgG production from murine splenic B lymphocytes both in vitro and in vivo. The mechanism might be through the ROS-NF-kappaB pathway and can be attenuated by the activation of LXR.


Long term outcomes of drug-eluting stent versus coronary artery bypass grafting for left main coronary artery disease: a meta-analysis.

  • Kong-Yong Cui‎ et al.
  • Journal of geriatric cardiology : JGC‎
  • 2018‎

It is still controversial whether percutaneous coronary intervention with drug-eluting stent (DES) is safe and effective compared to coronary artery bypass graft surgery (CABG) for unprotected left main coronary artery (ULMCA) disease at long-term follow up (≥ 3 years).


Internet Communication Disorder and the structure of the human brain: initial insights on WeChat addiction.

  • Christian Montag‎ et al.
  • Scientific reports‎
  • 2018‎

WeChat represents one of the most popular smartphone-based applications for communication. Although the application provides several useful features that simplify daily life, a growing number of users spend excessive amounts of time on the application. This may lead to interferences with everyday life and even to addictive patterns of use. In the context of the ongoing discussion on Internet Communication Disorder (ICD), the present study aimed to better characterize the addictive potential of communication applications, using WeChat as an example, by examining associations between individual variations in tendencies towards WeChat addiction and brain structural variations in fronto-striatal-limbic brain regions. To this end levels of addictive tendencies, frequency of use and structural MRI data were assessed in n = 61 healthy participants. Higher tendencies towards WeChat addiction were associated with smaller gray matter volumes of the subgenual anterior cingulate cortex, a key region for monitoring and regulatory control in neural networks underlying addictive behaviors. Moreover, a higher frequency of the paying function was associated with smaller nucleus accumbens volumes. Findings were robust after controlling for levels of anxiety and depression. The present results are in line with previous findings in substance and behavioral addictions, and suggest a similar neurobiological basis in ICD.


Meta-analysis of cortical thickness abnormalities in medication-free patients with major depressive disorder.

  • Qian Li‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2020‎

Alterations in cortical thickness have been identified in major depressive disorder (MDD), but findings have been variable and inconsistent. To date, no reliable tools have been available for the meta-analysis of surface-based morphometric (SBM) studies to effectively characterize what has been learned in previous studies, and drug treatments may have differentially impacted findings. We conducted a comprehensive meta-analysis of magnetic resonance imaging (MRI) studies that explored cortical thickness in medication-free patients with MDD, using a newly developed meta-analytic mask compatible with seed-based d mapping (SDM) meta-analytic software. We performed the meta-regression to explore the effects of demographics and clinical characteristics on variation in cortical thickness in MDD. Fifteen studies describing 529 patients and 586 healthy controls (HCs) were included. Medication-free patients with MDD, relative to HCs, showed a complex pattern of increased cortical thickness in some areas (posterior cingulate cortex, ventromedial prefrontal cortex, and anterior cingulate cortex) and decreased cortical thickness in others (gyrus rectus, orbital segment of the superior frontal gyrus, and middle temporal gyrus). Most findings in the whole sample analysis were confirmed in a meta-analysis of studies recruiting medication-naive patients. Using the new mask specifically developed for SBM studies, this SDM meta-analysis provides evidence for regional cortical thickness alterations in MDD, mainly involving increased cortical thickness in the default mode network and decreased cortical thickness in the orbitofrontal and temporal cortex.


Developmentally regulated Arabidopsis thaliana susceptibility to tomato spotted wilt virus infection.

  • Ying Huang‎ et al.
  • Molecular plant pathology‎
  • 2020‎

Tomato spotted wilt virus (TSWV) is one of the most devastating plant viruses and often causes severe crop losses worldwide. Generally, mature plants become more resistant to pathogens, known as adult plant resistance. In this study, we demonstrated a new phenomenon involving developmentally regulated susceptibility of Arabidopsis thaliana to TSWV. We found that Arabidopsis plants become more susceptible to TSWV as plants mature. Most young 3-week-old Arabidopsis were not infected by TSWV. Infection of TSWV in 4-, 5-, and 6-week-old Arabidopsis increased from 9%, 21%, and 25%, respectively, to 100% in 7- to 8-week-old Arabidopsis plants. Different isolates of TSWV and different tospoviruses show a low rate of infection in young Arabidopsis but a high rate in mature plants. When Arabidopsis dcl2/3/4 or rdr1/2/6 mutant plants were inoculated with TSWV, similar results as observed for the wild-type Arabidopsis plants were obtained. A cell-to-cell movement assay showed that the intercellular movement efficiency of TSWV NSm:GFP fusion was significantly higher in 8-week-old Arabidopsis leaves compared with 4-week-old Arabidopsis leaves. Moreover, the expression levels of pectin methylesterase and β-1,3-glucanase, which play critical roles in macromolecule cell-to-cell trafficking, were significantly up-regulated in 8-week-old Arabidopsis leaves compared with 4-week-old Arabidopsis leaves during TSWV infection. To date, this mature plant susceptibility to pathogen infections has rarely been investigated. Thus, the findings presented here should advance our knowledge on the developmentally regulated mature host susceptibility to plant virus infection.


Reclassification of DMD Duplications as Benign: Recommendations for Cautious Interpretation of Variants Identified in Prenatal Screening.

  • Wenbin He‎ et al.
  • Genes‎
  • 2022‎

Duplications are the main type of dystrophin gene (DMD) variants, which typically cause dystrophinopathies such as Duchenne muscular dystrophy and Becker muscular dystrophy. Maternally inherited exon duplication in DMD in fetuses is a relatively common finding of genetic screening in clinical practice. However, there is no standard strategy for interpretation of the pathogenicity of DMD duplications during prenatal screening, especially for male fetuses, in which maternally inherited pathogenic DMD variants more frequently cause dystrophinopathies. Here, we report three non-contiguous DMD duplications identified in a woman and her male fetus during prenatal screening. Multiplex ligation probe amplification and long-read sequencing were performed on the woman and her family members to verify the presence of DMD duplications. Structural rearrangements in the DMD gene were mapped by long-read sequencing, and the breakpoint junction sequences were validated using Sanger sequencing. The woman and her father carried three non-contiguous DMD duplications. Long-read and Sanger sequencing revealed that the woman's father carried an intact DMD copy and a complex structural rearrangement of the DMD gene. Therefore, we reclassified these three non-contiguous DMD duplications, one of which is listed as pathogenic, as benign. We postulate that breakpoint analysis should be performed on identified DMD duplication variants, and the pathogenicity of the duplications found during prenatal screening should be interpreted cautiously for clinical prediction and genetic/reproductive counseling.


Development of a novel PROTAC using the nucleic acid aptamer as a targeting ligand for tumor selective degradation of nucleolin.

  • Lin Zhang‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2022‎

PROteolysis TArgeting Chimeras (PROTACs) induce targeted protein degradation by hijacking the intracellular ubiquitin proteasome system, thus emerging as a new strategy for drug development. However, most PROTACs generated lack cell-type selectivity and are poorly soluble in water. To address this drawback, we developed a novel PROTAC ZL216 using aptamer AS1411 as a targeting ligand of nucleolin to conjugate with a small molecule ligand of E3 ligase VHL, which shows high aqueous solubility and serum stability. Based on the differential expression of nucleolin on the cell surface, ZL216 could bind to and internalize into breast cancer cells, but not normal breast cells. Furthermore, we revealed that ZL216 promoted the formation of a nucleolin-ZL216-VHL ternary complex in breast cancer cells and potently induced nucleolin degradation in vitro and in vivo. As a result, ZL216 inhibited the proliferation and migration of breast cancer cells. These studies demonstrate that in addition to peptides and small molecule compounds, nuclei acid aptamers can also be used to generate PROTACs, which broadens the toolbox constructing PROTACs and provides a promising strategy for development of tumor-selective PROTACs.


The regulation of NONO by USP11 via deubiquitination is linked to the proliferation of melanoma cells.

  • Peifu Feng‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Ubiquitin-specific protease 11 (USP11) has been implicated in the regulation of DNA repair, apoptosis, signal transduction and cell cycle. It belongs to a USP subfamily of deubiquitinases. Although previous research has shown that USP11 overexpression is frequently found in melanoma and is correlated with a poor prognosis, the potential molecular mechanism of USP11 in melanoma remains indefinitive. Here, we report that USP11 and NONO colocalize and interact with each other in the nucleus of melanoma cells. As a result, the knockdown of USP11 decreases NONO levels. Whereas, overexpression of USP11 increases NONO levels in a dose-dependent manner. Furthermore, we reveal that USP11 protects NONO protein from proteasome-mediated degradation by removing poly-ubiquitin chains conjugated onto NONO. Functionally, USP11 mediated melanoma cell proliferation via the regulation of NONO levels because ablation of USP11 inhibits the proliferation which could be rescued by ectopic expression of NONO protein. Moreover, a significant positive correlation between USP11 and NONO concentrations was found in clinical melanoma samples. Collectively, these results demonstrate that USP11 is a new deubiquitinase of NONO and that the signalling axis of USP11-NONO is significantly involved in melanoma proliferation.


Oral Pregabalin in Cardiac Surgery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

  • Xian-Xue Wang‎ et al.
  • BioMed research international‎
  • 2021‎

Pregabalin has received wide clinical attention as a new type of analgesic. We undertake a systematic review and meta-analysis to evaluate the effect of pregabalin on postoperative pain in patients undergoing cardiac surgery.


Inactivated SARS-CoV-2 vaccine does not influence the profile of prothrombotic antibody nor increase the risk of thrombosis in a prospective Chinese cohort.

  • Tingting Liu‎ et al.
  • Science bulletin‎
  • 2021‎

The presence of antiphospholipid antibodies was shown to be associated with thrombosis in coronavirus disease 2019 (COVID-19) patients. Recently, according to reports from several studies, the vaccine-induced immune thrombotic thrombocytopenia is mediated by anti-platelet factor 4 (PF4)-polyanion complex in adenovirus-vectored COVID-19 vaccine recipients. It is impendent to explore whether inactivated COVID-19 vaccine widely used in China influences prothrombotic autoantibody production and induces thrombosis. In this prospective study, we recruited 406 healthcare workers who received two doses, 21 days apart, of inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (BBIBP-CorV, Sinopharm). Paired blood samples taken before vaccination and four weeks after the second vaccination were used in detecting prothrombotic autoantibodies, including anticardiolipin (aCL), anti-β2 glycoprotein I (aβ2GP1), anti-phosphatidylserine/prothrombin (aPS/PT), and anti-PF4-heparin. The seroconversion rate of SARS-CoV-2 specific antibodies was 95.81% (389/406) four weeks after vaccination. None of the subjects had spontaneous thrombosis or thrombocytopenia over a minimum follow-up period of eight weeks. There was no significant difference in the presence of all ten autoantibodies between samples collected before and after vaccination: for aCL, IgG (7 vs. 8, P = 0.76), IgM (41 vs. 44, P = 0.73), IgA (4 vs. 4, P = 1.00); anti-β2GP1, IgG (7 vs. 6, P = 0.78), IgM (6 vs. 5, P = 0.76), IgA (3 vs. 5, P = 0.72); aPS/PT IgG (0 vs. 0, P = 1.00), IgM (6 vs. 5, P = 0.76); aPF4-heparin (2 vs. 7, P = 0.18), and antinuclear antibody (ANA) (18 vs. 21, P = 0.62). Notably, seven cases presented with anti-PF4-heparin antibodies (range: 1.18-1.79 U/mL) after vaccination, and none of them exhibited any sign of thrombotic disorder. In conclusion, inactivated SARS-CoV-2 vaccine does not influence the profile of antiphospholipid antibody and anti-PF4-heparin antibody nor increase the risk of thrombosis.


Genomic Analysis of Mycobacterium abscessus Complex Isolates from Patients with Pulmonary Infection in China.

  • Peipei Jin‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Members of the Mycobacterium abscessus complex (MABC) are multidrug-resistant nontuberculous mycobacteria and increasingly cause opportunistic pulmonary infections. However, the genetic typing of MABC isolates remains largely unclear in China. Genomic analyses were conducted for 69 MABC clinical isolates obtained from patients with lower respiratory tract infections in Shanghai Pulmonary Hospital between 2014 and 2016. The draft genomes of the 69 clinical strains were assembled, with a total length of 4.5 to 5.6 Mb, a percent GC content (GC%) ranging from 63.9 to 68.1%, and 4,492 to 5,404 genes per genome. Susceptibility test shows that most isolates are resistant to many antimicrobials, including clarithromycin, but susceptible to tigecycline. Analyses revealed the presence of genes conferring resistance to antibiotics, including macrolides, aminoglycosides, rifampicin, and tetracyclines. Furthermore, 80 to 114 virulence genes were identified per genome, including those related to the invasion of macrophages, iron incorporation, and avoidance of immune clearance. Mobile genetic elements, including insertion sequences, transposons, and genomic islands, were discovered in the genomes. Phylogenetic analyses of all MABC isolates with another 41 complete MABC genomes identified three clades; 46 isolates were clustered in clade I, corresponding to M. abscessus subsp. abscessus, and 25 strains belonged to existing clonal complexes. Overall, this is the first comparative genomic analysis of MABC clinical isolates in China. These results show significant intraspecies variations in genetic determinants encoding antimicrobial resistance, virulence, and mobile elements and controversial subspecies classification using current marker gene combinations. This information will be useful in understanding the evolution, antimicrobial resistance, and pathogenesis of MABC strains and facilitating future vaccine development and drug design. IMPORTANCE Over the past decade, infections by Mycobacterium abscessus complex (MABC) isolates have been increasingly reported worldwide. MABC strains often show a high incidence in cystic fibrosis (CF) patients, whereas in Asia, these strains are frequently recovered from non-CF patients with significant genomic diversity. The present work involves analyses of the antimicrobial resistance, virulence, and phylogeny of 69 selected MABC isolates from non-CF pulmonary patients in Shanghai Pulmonary Hospital by whole-genome sequencing; it represents the first comprehensive investigation of MABC strains in China at the genomic level. These findings highlight the diversity of this group of nontuberculous mycobacteria and provide a mechanistic understanding of evolution and pathogenesis, which is valuable for the development of novel and effective antimicrobial therapies for deadly MABC infections in China.


Glucoside xylosyltransferase 2 as a diagnostic and prognostic marker in gastric cancer via comprehensive analysis.

  • Yunxia Zhao‎ et al.
  • Bioengineered‎
  • 2021‎

To investigate the potential role of GXYLT2 (glucoside xylosyltransferase 2) in gastric cancer (GC), the TCGA (The Cancer Genome Atlas) database and Gene Expression Omnibus (GEO) dataset were used to evaluate GXYLT2 mRNA expression, and the standardized mean difference and diagnostic value were comprehensively assessed. Survival analysis and univariate/multivariate cox regression analysis were performed to evaluate the prognostic value of GXYLT2 in GC patients. The correlation between GXYLT2 and tumor immune cells was identified by using the CIBERSORT algorithm. The results showed that GXYLT2 expression level was significantly increased in GC tissues. GXYLT2 expression was significantly correlated with the grade, stage, and invasion depth of gastric cancer. Overall survival was reduced in the high GXYLT2 expression group. Univariate and multivariate Cox regression analyses showed that GXYLT2 was a reliable prognostic factor. GSEA showed that GXYLT2 might participate in the development of GC through tumor-related pathways. The expression of GXYLT2 was positively correlated with 5 tumor-infiltrating immune cells (resting dendritic cells, m2 macrophages, monocytes, active NK cells and resting mast cells), and was negatively correlated with 6 tumor-infiltrating immune cells (plasma cells, activated memory CD4 T cells, resting NK cells, activated dendritic cells, and activated neutrophils and mast cells). Through cell experiment verification, GXYLT2 expression level in gastric cancer cells was found to be high, which verified the results from the bioinformatics analysis. Furthermore, immunohistochemical staining results also showed that GC tissues had positive GXYLT2 expression. In summary, GXYLT2 might be a potential diagnostic and prognostic biomarker for gastric cancer.


Disorder- and emotional context-specific neurofunctional alterations during inhibitory control in generalized anxiety and major depressive disorder.

  • Congcong Liu‎ et al.
  • NeuroImage. Clinical‎
  • 2021‎

Major Depressive Disorder (MDD) and Generalized Anxiety Disorder (GAD) are highly debilitating and often co-morbid disorders. The disorders exhibit partly overlapping dysregulations on the behavioral and neurofunctional level. The determination of disorder-specific behavioral and neurofunctional dysregulations may therefore promote neuro-mechanistic and diagnostic specificity. In order to determine disorder-specific alterations in the domain of emotion-cognition interactions the present study examined emotional context-specific inhibitory control in treatment-naïve MDD (n = 37) and GAD (n = 35) patients and healthy controls (n = 35). On the behavioral level MDD but not GAD exhibited impaired inhibitory control irrespective of emotional context. On the neural level, MDD-specific attenuated recruitment of inferior/medial parietal, posterior frontal, and mid-cingulate regions during inhibitory control were found during the negative context. GAD exhibited a stronger engagement of the left dorsolateral prefrontal cortex relative to MDD. Overall the findings from the present study suggest disorder- and emotional context-specific behavioral and neurofunctional inhibitory control dysregulations in major depression and may point to a depression-specific neuropathological and diagnostic marker.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: