Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 95 papers

Growth hormone treatment of premature ovarian failure in a mouse model via stimulation of the Notch-1 signaling pathway.

  • T E Liu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2016‎

Premature ovarian failure (POF) is a condition affecting 1% of women in the general population, causing amenorrhea, hypergonadotropism and hypoestrogenism before the age of 40. Currently, POF cannot be reversed and, although treatments are available, there is an urgent need for improved treatment strategies. Growth hormone (GH) is a pleiotropic hormone that affects a broad spectrum of physiological functions, from carbohydrate and lipid metabolism to the immune response. GH has previously been used to treat POF in non-transgenic preclinical trials, but the biochemical mechanism underlying these effects are unclear. In the present study, a mouse model of POF was generated using cyclophosphamide. Treatment of POF mice with recombinant mouse growth hormone (rmGH) was revealed to markedly reduce POF histopathology in ovarian tissue, relieve ovarian granulosa cell injury, reduce the number of atretic follicles and significantly increase the number of mature oocytes. Furthermore, an enzyme-linked immunosorbent assay revealed that plasma estradiol levels increased and plasma follicle stimulating hormone levels decreased with time in a group of mice treated with a medium dose of rmGH (0.8 mg/kg) when compared with the POF model group (P<0.05). In addition, reverse transcription-quantitative polymerase chain reaction and immunohistochemical analysis demonstrated elevated levels of Notch-1 signaling pathway factors (Notch1, CBF1, and HES1) in wild-type mice and those treated with medium and high doses of rmGH, but not in those treated with low doses of rmGH. In conclusion, GH may promote ovarian tissue repair, estrogen release and oocyte maturation via activation of the Notch-1 signaling pathway in ovarian tissue.


The influence of astragalus polysaccharide and β-elemene on LX-2 cell growth, apoptosis and activation.

  • Jin Zheng‎ et al.
  • BMC gastroenterology‎
  • 2014‎

Activated hepatic stellate cells are the main source of excessive collagen deposition in liver fibrosis. Here we report the inhibitory effects of the combinational treatment of two natural products, astragalus polysaccharide (APS) and β-elemene (ELE) on the activation of human liver hepatic stellate cell line LX-2 cells.


Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein.

  • Cristine Betzer‎ et al.
  • PloS one‎
  • 2015‎

Monomeric α-synuclein (αSN) species are abundant in nerve terminals where they are hypothesized to play a physiological role related to synaptic vesicle turn-over. In Parkinson's disease (PD) and dementia with Lewy body (DLB), αSN accumulates as aggregated soluble oligomers in terminals, axons and the somatodendritic compartment and insoluble filaments in Lewy inclusions and Lewy neurites. The autosomal dominant heritability associated to mutations in the αSN gene suggest a gain of function associated to aggregated αSN. We have conducted a proteomic screen to identify the αSN interactome in brain synaptosomes. Porcine brain synaptosomes were fractionated, solubilized in non-denaturing detergent and subjected to co-immunoprecipitation using purified recombinant human αSN monomers or oligomers as bait. The isolated αSN binding proteins were identified with LC-LTQ-orbitrap tandem mass spectrometry and quantified by peak area using Windows client application, Skyline Targeted Proteomic Environment. Data are available via ProteomeXchange with identifier PXD001462. To quantify the preferential binding an average fold increase was calculated by comparing binding to monomer and oligomer. We identified 10 proteins preferentially binding monomer, and 76 binding preferentially to oligomer and a group of 92 proteins not displaying any preferred conformation of αSN. The proteomic data were validated by immunoprecipitation in both human and porcine brain extracts using antibodies against monomer αSN interactors: Abl interactor 1, and myelin proteolipid protein, and oligomer interactors: glutamate decarboxylase 2, synapsin 1, glial fibrillary acidic protein, and VAMP-2. We demonstrate the existence of αSN conformation selective ligands and present lists of proteins, whose identity and functions will be useful for modeling normal and pathological αSN dependent processes.


DR region of Na+-K+-ATPase is a new target to protect heart against oxidative injury.

  • Fei Hua‎ et al.
  • Scientific reports‎
  • 2018‎

Previous studies have shown that the activity and expression of Na+/K+-ATPase (NKA) are down-regulated in the failing hearts, and that an antibody against the DR-region of NKA (DR-Ab) can stimulate its activity. The present study was designed to investigate the beneficial effects of this antibody against cardiac injury and the underlying mechanisms. We found that DR-Ab improved cardiac function, alleviated cardiac hypertrophy and reduced oxidative stress in isoproterenol-treated mice. In AC16 human cardiomyocytes, DR-Ab increased cell viability and attenuated apoptosis under oxidative stress. Corresponding to the observation of reduced NKA activity, NKA abundance on plasma membrane was lowered during oxidative stress. Suppressed activity of protein phosphatase 2 A (PP2A) was responsible for the loss of membrane NKA due to the increased phosphorylation of key serine residues that trigger endocytosis. Incubation with DR-Ab restored PP2A activity and stabilized NKA expression on the plasma membrane. Inhibitors of PP2A abolished the protective effect of DR-Ab against oxidative stress. In summary, our data indicate that loss of membrane NKA may contribute to cardiac pathologies in heart failure. DR-Ab, by stabilizing membrane NKA, protects cardiomyocytes against oxidative injury and improves cardiac function in the failing hearts, suggesting a novel approach to treat heart failure.


A modified rat model of isolated bilateral pulmonary contusion.

  • Shaohua Wang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2012‎

The aim of the present study was to create a feasible specific rat model of isolated bilateral pulmonary contusion (PC) and to evaluate the relationship between severity of hypoxemia and quantity of contusion lesions. Anesthetized rats were placed in a prone position. Injury energy ranging from 2.1 to 3.0 J was produced by a falling weight passed through a specially designed arched shield to the bilateral chest wall of rats. After injury (4 h), the contusion volume was measured using computer-generated three-dimensional reconstruction from a chest computed tomographic scan and expressed as a percentage of total lung volume. Arterial partial pressure of oxygen (PaO(2)) in blood gas analysis and contusion volume percentage were used to assess the severity of contusion. Heart and lung biopsy was used to confirm the diagnosis and rule out the existence of myocardial contusion. There were 3 cases of death and 1 case of death in the 3.0 J and the 2.4 J group, respectively. PaO(2) in the 2.7 J group was significantly lower than that in the lower energy groups (P<0.001). The percentage of pulmonary contusion in the 2.7 J group was significantly higher compared to that of the lower energy groups (P<0.001). PaO(2) was negatively correlated with contusion percentage (R(2)=0.76). Hemorrhage, edema and neutrophil infiltration were determined by lung biopsy. No evidence of myocardial contusion was documented in multiple heart biopsies. The method illustrated in this research effectively duplicates isolated bilateral pulmonary contusion in rats, the severity of which is highly correlated with the contusion size. Thus, 2.7 J can be regarded as the maximal energy for sublethal injury.


Regulation of Na+-K+-ATPase effected high glucose-induced myocardial cell injury through c-Src dependent NADPH oxidase/ROS pathway.

  • Xiaofei Yan‎ et al.
  • Experimental cell research‎
  • 2017‎

Depressed Na+/K+-ATPase activity has long been reported to be involved in diabetic-related cardiomyocyte death and cardiac dysfunction. However, the nature of directly regulating Na+-K+-ATPase in diabetic-related myocardial diseases remains unknown. Hyperglycemia is believed as one of major factors responsible for diabetic-related myocardial apoptosis and dysfunction. In this study, whether inhibiting Na+-K+-ATPase by ouabain or activating Na+-K+-ATPase by DRm217 has functions on high glucose (HG) -induced myocardial injury was investigated. Here we found that addition of DRm217 or ouabain to HG-treated cells had opposite effects. DRm217 decreased but ouabain increased HG-induced cell injury and apoptosis. This was mediated by changing Na+-K+-ATPase activity and Na+-K+-ATPase cell surface expression. The inhibition of Na+-K+-ATPase endocytosis alleviated HG-induced ROS accumulation. Na+-K+-ATPase·c-Src dependent NADPH oxidase/ROS pathway was also involved in the effects of ouabain and DRm217 on HG-induced cell injury. These novel results may help us to understand the important role of the Na+-K+-ATPase in diabetic cardiovascular diseases.


NDRG2 inhibits hepatocellular carcinoma adhesion, migration and invasion by regulating CD24 expression.

  • Jin Zheng‎ et al.
  • BMC cancer‎
  • 2011‎

The prognosis of most hepatocellular carcinoma (HCC) patients is poor due to the high metastatic rate of the disease. Understanding the molecular mechanisms underlying HCC metastasis is extremely urgent. The role of CD24 and NDRG2 (N-myc downstream-regulated gene 2), a candidate tumor suppressor gene, has not yet been explored in HCC.


Combined strategy of endothelial cells coating, Sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft.

  • Yang Li‎ et al.
  • PloS one‎
  • 2013‎

Improving islet graft revascularization and inhibiting rejection become crucial tasks for prolonging islet graft survival. Endothelial cells (ECs) are the basis of islet vascularization and Sertoli cells (SCs) have the talent to provide nutritional support and exert immunosuppressive effects. We construct a combined strategy of ECs coating in the presence of nutritious and immune factors supplied by SCs in a co-culture system to investigate the effect of vascularization and rejection inhibition for islet graft. In vivo, the combined strategy improved the survival and vascularization as well as inhibited lymphocytes and inflammatory cytokines. In vitro, we found the combinatorial strategy improved the function of islets and the effect of ECs-coating on islets. Combined strategy treated islets revealed higher levels of anti-apoptotic signal molecules (Bcl-2 and HSP-32), survival and function related molecules (PDX-1, Ki-67, ERK1/2 and Akt) and demonstrated increased vascular endothelial growth factor receptor 2 (KDR) and angiogenesis signal molecules (FAk and PLC-γ). SCs effectively inhibited the activation of lymphocyte stimulated by islets and ECs. Predominantly immunosuppressive cytokines could be detected in culture supernatants of the SCs coculture group. These results suggest that ECs-coating and Sertoli cells co-culture or infusion synergistically enhance islet survival and function after transplantation.


PFE-360-induced LRRK2 inhibition induces reversible, non-adverse renal changes in rats.

  • Michael Aagaard Andersen‎ et al.
  • Toxicology‎
  • 2018‎

Parkinson's disease (PD) is a progressive neurodegenerative disorder for which there is no existing therapeutic approach to delay or stop progression. Genetic, biochemical and pre-clinical studies have provided evidence that leucine-rich-repeat-kinase-2 (LRRK2) kinase is involved in the pathogenesis of PD, and small molecule LRRK2 inhibitors represent a novel potential therapeutic approach. However, potentially adverse target-related effects have been discovered in the lung and kidneys of LRRK2 knock-out (ko) mice and rats. It is unclear if the LRRK2 ko effect in the kidneys and lung is also induced by pharmacological inhibition of the LRRK2 kinase. Here, we show that treatment with the LRRK2 inhibitor PFE-360 in rats induces a morphological kidney phenotype resembling that of the LRRK2 ko rats, whereas no effects were observed in the lung. The PFE-360 treatment induced morphological changes characterised by darkened kidneys and progressive accumulation of hyaline droplets in the renal proximal tubular epithelium. However, no histopathological evidence of renal tubular injury or changes in the blood and urine parameters that would be indicative of kidney toxicity or impaired kidney function were observed after up to 12 weeks of treatment. Morphological changes were detected in the kidney after 2 weeks of treatment and were partially reversible within a 30 day treatment-free period. Our findings suggest that pharmacological LRRK2 inhibition may not have adverse consequences for kidney function.


ELISA method to detect α-synuclein oligomers in cell and animal models.

  • Louise Berkhoudt Lassen‎ et al.
  • PloS one‎
  • 2018‎

Soluble aggregates of α-synuclein, so-called oligomers, are hypothesized to act as neurotoxic species in Parkinson's disease, Lewy body dementia and multiple systems atrophy, but specific tools to detect these aggregated species are only slowly appearing. We have developed an α-synuclein oligomer ELISA that allows us to detect and compare α-synuclein oligomer levels in different in vivo and in vitro experiments. The ELISA is based on commercially available antibodies and the epitope of the capture antibody MJF14-6-4-2 is folding- and aggregate-dependent and not present on monomers.


Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation.

  • Cristine Betzer‎ et al.
  • EMBO reports‎
  • 2018‎

Aggregation of α-synuclein is a hallmark of Parkinson's disease and dementia with Lewy bodies. We here investigate the relationship between cytosolic Ca2+ and α-synuclein aggregation. Analyses of cell lines and primary culture models of α-synuclein cytopathology reveal an early phase with reduced cytosolic Ca2+ levels followed by a later Ca2+ increase. Aggregated but not monomeric α-synuclein binds to and activates SERCA in vitro, and proximity ligation assays confirm this interaction in cells. The SERCA inhibitor cyclopiazonic acid (CPA) normalises both the initial reduction and the later increase in cytosolic Ca2+ CPA protects the cells against α-synuclein-aggregate stress and improves viability in cell models and in Caenorhabditis elegans in vivo Proximity ligation assays also reveal an increased interaction between α-synuclein aggregates and SERCA in human brains affected by dementia with Lewy bodies. We conclude that α-synuclein aggregates bind SERCA and stimulate its activity. Reducing SERCA activity is neuroprotective, indicating that SERCA and down-stream processes may be therapeutic targets for treating α-synucleinopathies.


Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats.

  • Nathalie Van Den Berge‎ et al.
  • Acta neuropathologica‎
  • 2019‎

The conversion of endogenous alpha-synuclein (asyn) to pathological asyn-enriched aggregates is a hallmark of Parkinson's disease (PD). These inclusions can be detected in the central and enteric nervous system (ENS). Moreover, gastrointestinal symptoms can appear up to 20 years before the diagnosis of PD. The dual-hit hypothesis posits that pathological asyn aggregation starts in the ENS, and retrogradely spreads to the brain. In this study, we tested this hypothesis by directly injecting preformed asyn fibrils into the duodenum wall of wild-type rats and transgenic rats with excess levels of human asyn. We provide a meticulous characterization of the bacterial artificial chromosome (BAC) transgenic rat model with respect to initial propagation of pathological asyn along the parasympathetic and sympathetic pathways to the brainstem, by performing immunohistochemistry at early time points post-injection. Induced pathology was observed in all key structures along the sympathetic and parasympathetic pathways (ENS, autonomic ganglia, intermediolateral nucleus of the spinal cord (IML), heart, dorsal motor nucleus of the vagus, and locus coeruleus (LC)) and persisted for at least 4 months post-injection. In contrast, asyn propagation was not detected in wild-type rats, nor in vehicle-injected BAC rats. The presence of pathology in the IML, LC, and heart indicate trans-synaptic spread of the pathology. Additionally, the observed asyn inclusions in the stomach and heart may indicate secondary anterograde propagation after initial retrograde spreading. In summary, trans-synaptic propagation of asyn in the BAC rat model is fully compatible with the "body-first hypothesis" of PD etiopathogenesis. To our knowledge, this is the first animal model evidence of asyn propagation to the heart, and the first indication of bidirectional asyn propagation via the vagus nerve, i.e., duodenum-to-brainstem-to-stomach. The BAC rat model could be very valuable for detailed mechanistic studies of the dual-hit hypothesis, and for studies of disease modifying therapies targeting early pathology in the gastrointestinal tract.


Long-Term Exposure to PFE-360 in the AAV-α-Synuclein Rat Model: Findings and Implications.

  • Michael Aagaard Andersen‎ et al.
  • eNeuro‎
  • 2019‎

Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with impaired motor function and several non-motor symptoms, with no available disease modifying treatment. Intracellular accumulation of pathological α-synuclein inclusions is a hallmark of idiopathic PD, whereas, dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with familial PD that is clinically indistinguishable from idiopathic PD. Recent evidence supports the hypothesis that an increase in LRRK2 kinase activity is associated with the development of not only familial LRRK2 PD, but also idiopathic PD. Previous reports have shown preclinical effects of LRRK2 modulation on α-synuclein-induced neuropathology. Increased subthalamic nucleus (STN) burst firing in preclinical neurotoxin models and PD patients is hypothesized to be causally involved in the development of the motor deficit in PD. To study a potential pathophysiological relationship between α-synuclein pathology and LRRK2 kinase activity in PD, we investigated the effect of chronic LRRK2 inhibition in an AAV-α-synuclein overexpression rat model. In this study, we report that chronic LRRK2 inhibition using PFE-360 only induced a marginal effect on motor function. In addition, the aberrant STN burst firing and associated neurodegenerative processes induced by α-synuclein overexpression model remained unaffected by chronic LRRK2 inhibition. Our findings do not strongly support LRRK2 inhibition for the treatment of PD. Therefore, the reported beneficial effects of LRRK2 inhibition in similar α-synuclein overexpression rodent models must be considered with prudence and additional studies are warranted in alternative α-synuclein-based models.


Globally distributed mining-impacted environments are underexplored hotspots of multidrug resistance genes.

  • Xinzhu Yi‎ et al.
  • The ISME journal‎
  • 2022‎

Mining is among the human activities with widest environmental impacts, and mining-impacted environments are characterized by high levels of metals that can co-select for antibiotic resistance genes (ARGs) in microorganisms. However, ARGs in mining-impacted environments are still poorly understood. Here, we conducted a comprehensive study of ARGs in such environments worldwide, taking advantage of 272 metagenomes generated from a global-scale data collection and two national sampling efforts in China. The average total abundance of the ARGs in globally distributed studied mine sites was 1572 times per gigabase, being rivaling that of urban sewage but much higher than that of freshwater sediments. Multidrug resistance genes accounted for 40% of the total ARG abundance, tended to co-occur with multimetal resistance genes, and were highly mobile (e.g. on average 16% occurring on plasmids). Among the 1848 high-quality metagenome-assembled genomes (MAGs), 85% carried at least one multidrug resistance gene plus one multimetal resistance gene. These high-quality ARG-carrying MAGs considerably expanded the phylogenetic diversity of ARG hosts, providing the first representatives of ARG-carrying MAGs for the Archaea domain and three bacterial phyla. Moreover, 54 high-quality ARG-carrying MAGs were identified as potential pathogens. Our findings suggest that mining-impacted environments worldwide are underexplored hotspots of multidrug resistance genes.


Protein kinase R dependent phosphorylation of α-synuclein regulates its membrane binding and aggregation.

  • Lasse Reimer‎ et al.
  • PNAS nexus‎
  • 2022‎

Aggregated α-synuclein (α-syn) accumulates in the neuronal Lewy body (LB) inclusions in Parkinson's disease (PD) and LB dementia. Yet, under nonpathological conditions, monomeric α-syn is hypothesized to exist in an equilibrium between disordered cytosolic- and partially α-helical lipid-bound states: a feature presumably important in synaptic vesicle release machinery. The exact underlying role of α-syn in these processes, and the mechanisms regulating membrane-binding of α-syn remains poorly understood. Herein we demonstrate that Protein kinase R (PKR) can phosphorylate α-syn at several Ser/Thr residues located in the membrane-binding region that is essential for α-syn's vesicle-interactions. α-Syn phosphorylated by PKR or α-syn isolated from PKR overexpressing cells, exhibit decreased binding to lipid membranes. Phosphorylation of Thr64 and Thr72 appears as the major contributor to this effect, as the phosphomimetic Thr64Glu/Thr72Glu-α-syn mutant displays reduced overall attachment to brain vesicles due to a decrease in vesicle-affinity of the last two thirds of α-syn's membrane binding region. This allows enhancement of the "double-anchor" vesicle-binding mechanism that tethers two vesicles and thus promote the clustering of presynaptic vesicles in vitro. Furthermore, phosphomimetic Thr64Glu/Thr72Glu-α-syn inhibits α-syn oligomerization and completely abolishes nucleation, elongation, and seeding of α-syn fibrillation in vitro and in cells, and prevents trans-synaptic spreading of aggregated α-syn pathology in organotypic hippocampal slice cultures. Overall, our findings demonstrate that normal and abnormal functions of α-syn, like membrane-binding, synaptic vesicle clustering and aggregation can be regulated by phosphorylation, e.g., via PKR. Mechanisms that could potentially be modulated for the benefit of patients suffering from α-syn aggregate-related diseases.


Diverse Methylmercury (MeHg) Producers and Degraders Inhabit Acid Mine Drainage Sediments, but Few Taxa Correlate with MeHg Accumulation.

  • Jin Zheng‎ et al.
  • mSystems‎
  • 2023‎

Methylmercury (MeHg) is a notorious neurotoxin, and its production and degradation in the environment are mainly driven by microorganisms. A variety of microbial MeHg producers carrying the gene pair hgcAB and degraders carrying the merB gene have been separately reported in recent studies. However, surprisingly little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat, and no studies have been performed to explore to what extent these two contrasting microbial groups correlate with MeHg accumulation in the habitat of interest. Here, we collected 86 acid mine drainage (AMD) sediments from an area spanning approximately 500,000 km2 in southern China and profiled the sediment-borne putative MeHg producers and degraders using genome-resolved metagenomics. 46 metagenome-assembled genomes (MAGs) containing hgcAB and 93 MAGs containing merB were obtained, including those from various taxa without previously known MeHg-metabolizing microorganisms. These diverse MeHg-metabolizing MAGs were formed largely via multiple independent horizontal gene transfer (HGT) events. The putative MeHg producers from Deltaproteobacteria and Firmicutes as well as MeHg degraders from Acidithiobacillia were closely correlated with MeHg accumulation in the sediments. Furthermore, these three taxa, in combination with two abiotic factors, explained over 60% of the variance in MeHg accumulation. Most of the members of these taxa were characterized by their metabolic potential for nitrogen fixation and copper tolerance. Overall, these findings improve our understanding of the ecology of MeHg-metabolizing microorganisms and likely have implications for the development of management strategies for the reduction of MeHg accumulation in the AMD sediments. IMPORTANCE Microorganisms are the main drivers of MeHg production and degradation in the environment. However, little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat. We used genome-resolved metagenomics to reveal the vast phylogenetic and metabolic diversities of putative MeHg producers and degraders in AMD sediments. Our results show that the diversity of MeHg-metabolizing microorganisms (particularly MeHg degraders) in AMD sediments is much higher than was previously recognized. Via multiple linear regression analysis, we identified both microbial and abiotic factors affecting MeHg accumulation in AMD sediments. Despite their great diversity, only a few taxa of MeHg-metabolizing microorganisms were closely correlated with MeHg accumulation. This work underscores the importance of using genome-resolved metagenomics to survey MeHg-metabolizing microorganisms and provides a framework for the illumination of the microbial basis of MeHg accumulation via the characterization of physicochemical properties, MeHg-metabolizing microorganisms, and the correlations between them.


Exosomal MicroRNA-374b-5p From Tubular Epithelial Cells Promoted M1 Macrophages Activation and Worsened Renal Ischemia/Reperfusion Injury.

  • Chenguang Ding‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Tubular epithelial cells (TECs) represent the primary site of renal ischemia/reperfusion injury (RIRI). However, whether the damage of TECs could drive the initiation of inflammation was unclear. Here we investigated the role of the TECs and macrophages during RIRI. Increased expression of inflammation response and activated M1 macrophage were determined in the mice model of RIRI. Moreover, we demonstrated global miRNA expression profiling of renal exosomes, and miR-374b-5p was most upregulated in these exosomes in vivo. Inhibition of miR-374b-5p in the mice upon RIR operation would alleviate the kidney injury via decreasing the production of proinflammatory cytokines and suppressing the macrophage activation. Similar results were also identified in the hypoxia-induced cell model where exosomal miR-374b-5p was dramatically upregulated. Uptake of exosomes derived from the hypoxic TECs by macrophages would trigger M1 polarization via transferring miR-374b-5p. Besides, we confirmed that miR-374b-5p could directly bind to Socs1 using a dual-luciferase reporter assay. Notably, when we injected the miR-374b-5p-enriched exosomes into mice, a high-level inflammatory response and M1 macrophage activation were performed. Our studies demonstrated that exosomal miR-374b-5p played an essential role in the communication between injured TECs and macrophages, resulting in the M1 macrophage activation during RIRI. The blockage of the release of such exosomes may serve as a new therapeutic strategy for RIRI.


Design of a Microbial Remediation Inoculation Program for Petroleum Hydrocarbon Contaminated Sites Based on Degradation Pathways.

  • Xingchun Li‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

This paper analyzed the degradation pathways of petroleum hydrocarbon degradation bacteria, screened the main degradation pathways, and found the petroleum hydrocarbon degradation enzymes corresponding to each step of the degradation pathway. Through the Copeland method, the best inoculation program of petroleum hydrocarbon degradation bacteria in a polluted site was selected as follows: single oxygenation path was dominated by Streptomyces avermitilis, hydroxylation path was dominated by Methylosinus trichosporium OB3b, secondary oxygenation path was dominated by Pseudomonas aeruginosa, secondary hydroxylation path was dominated by Methylococcus capsulatus, double oxygenation path was dominated by Acinetobacter baylyi ADP1, hydrolysis path was dominated by Rhodococcus erythropolis, and CoA path was dominated by Geobacter metallireducens GS-15 to repair petroleum hydrocarbon contaminated sites. The Copeland method score for this solution is 22, which is the highest among the 375 solutions designed in this paper, indicating that it has the best degradation effect. Meanwhile, we verified its effect by the Cdocker method, and the Cdocker energy of this solution is -285.811 kcal/mol, which has the highest absolute value. Among the inoculation programs of the top 13 petroleum hydrocarbon degradation bacteria, the effect of the best inoculation program of petroleum hydrocarbon degradation bacteria was 18% higher than that of the 13th group, verifying that this solution has the best overall degradation effect. The inoculation program of petroleum hydrocarbon degradation bacteria designed in this paper considered the main pathways of petroleum hydrocarbon pollutant degradation, especially highlighting the degradability of petroleum hydrocarbon intermediate degradation products, and enriching the theoretical program of microbial remediation of petroleum hydrocarbon contaminated sites.


Metagenomic analysis reveals specific BTEX degrading microorganisms of a bacterial consortium.

  • Hui-Jun Wu‎ et al.
  • AMB Express‎
  • 2023‎

Petroleum hydrocarbon contamination is of environmental and public health concerns due to its toxic components. Bioremediation utilizes microbial organisms to metabolism and remove these contaminants. The aim of this study was to enrich a microbial community and examine its potential to degrade petroleum hydrocarbon. Through successive enrichment, we obtained a bacterial consortium using crude oil as sole carbon source. The 16 S rRNA gene analysis illustrated the structural characteristics of this community. Metagenomic analysis revealed the specific microbial organisms involved in the degradation of cyclohexane and all the six BTEX components, with a demonstration of the versatile metabolic pathways involved in these reactions. Results showed that our consortium contained the full range of CDSs that could potentially degrade cyclohexane, benzene, toluene, and (o-, m-, p-) xylene completely. Interestingly, a single taxon that possessed all the genes involved in either the activation or the central intermediates degrading pathway was not detected, except for the Novosphingobium which contained all the genes involved in the upper degradation pathway of benzene, indicating the synergistic interactions between different bacterial genera during the hydrocarbon degradation.


Intraoperative pleth variability index-based fluid management therapy and gastrointestinal surgical outcomes in elderly patients: a randomised controlled trial.

  • Yu Wang‎ et al.
  • Perioperative medicine (London, England)‎
  • 2023‎

Intraoperative goal-directed fluid therapy (GDFT) has been reported to reduce postoperative complications of patients undergoing major abdominal surgery. The clinical benefits of pleth variability index (PVI)-directed fluid management for gastrointestinal (GI) surgical patients remain unclear. Therefore, this study aimed to evaluate the impact of PVI-directed GDFT on GI surgical outcomes in elderly patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: