Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma.

  • Yu-Suo Tong‎ et al.
  • Molecular cancer‎
  • 2015‎

Recent studies have demonstrated that long non-coding RNAs (lncRNAs) were present in the blood of cancer patients and have shown great potential as powerful and non-invasive tumor markers. However, little is known about the value of lncRNAs in the diagnosis of esophageal squamous cell carcinoma (ESCC). We hypothesized that ESCC-related lncRNAs might be released into the circulation during tumor initiation and could be utilized to detect and monitor ESCC.


Musk ketone induces apoptosis of gastric cancer cells via downregulation of sorbin and SH3 domain containing 2.

  • Juan An‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Musk ketone exerts antiproliferative effects on several types of cancer, such as lung and breast cancer. However, the effects and underlying mechanisms of action of musk ketone in gastric cancer (GC) are poorly understood. The present study aimed to investigate the effects of musk ketone in GC cells. The present study indicated that musk ketone exerted significant anticancer effects on GC cells. The IC50 values of musk ketone were 4.2 and 10.06 µM in AGS and HGC‑27 cells, respectively. Low dosage of musk ketone significantly suppressed the proliferation and colony formation of AGS and HGC‑27 cells. Cell cycle arrest and apoptosis were induced by musk ketone. Furthermore, microarray data indicated that musk ketone treatment led to downregulation of various genes, including sorbin and SH3 domain containing 2 (SORBS2). Reverse transcription‑quantitative PCR and immunoblotting results indicated that musk ketone repressed mRNA and protein expression levels of SORBS2. It was also shown that knockdown of SORBS2 inhibited the proliferation and colony formation of HGC‑27 cells. The antiproliferative effects of musk ketone were decreased in HGC‑27 cells with SORBS2 silencing. In summary, the present study indicated that musk ketone suppressed the proliferation and growth of GC partly by downregulating SORBS2 expression.


Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration.

  • Victoria Moiseeva‎ et al.
  • Nature‎
  • 2023‎

Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.


Thyroid transcription factor 1 (TTF-1) negativity as a predictor of unfavorable response to EGFR-TKI therapy in advanced lung adenocarcinoma patients with EGFR mutations.

  • Xiaosheng Ding‎ et al.
  • Thoracic cancer‎
  • 2023‎

The absence of thyroid transcription factor 1 (TTF-1) is associated with a lower frequency of epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma (LUAD). The aim of this study was to assess the impact of TTF-1 expression on the clinical response to EGFR-tyrosine kinase inhibitor (TKI) treatment in patients with advanced LUAD.


Glucose-coated Berberine Nanodrug for Glioma Therapy through Mitochondrial Pathway.

  • Shubin Wang‎ et al.
  • International journal of nanomedicine‎
  • 2020‎

Glioma is the primary malignant brain tumor with poor prognosis. Berberine (BBR) was the potential drug for anti-tumor in glioma cells. Based on its limitation of poor aqueous solubility and instability, little information of BBR nanoparticles is reported in glioma.


Molecular mechanism of long-term neuroprotective effects of gradual flow restoration on cerebral ischemia reperfusion injury in MCAO rats.

  • Ai-Ping Zhang‎ et al.
  • Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association‎
  • 2020‎

Ischemia-reperfusion injuries (IRIs) can aggravate the condition of some patients with acute occlusion of major intracranial artery (AOMIA) who received endovascular thrombectomy. Here, we provided data confirming the association of Repressor Element-1 Silencing Transcription factor (REST) with the long-term neuroprotective effect of the middle cerebral artery occlusion (MCAO) rats underwent Gradual Flow Restoration (GFR).


Sestrin prevents atrophy of disused and aging muscles by integrating anabolic and catabolic signals.

  • Jessica Segalés‎ et al.
  • Nature communications‎
  • 2020‎

A unique property of skeletal muscle is its ability to adapt its mass to changes in activity. Inactivity, as in disuse or aging, causes atrophy, the loss of muscle mass and strength, leading to physical incapacity and poor quality of life. Here, through a combination of transcriptomics and transgenesis, we identify sestrins, a family of stress-inducible metabolic regulators, as protective factors against muscle wasting. Sestrin expression decreases during inactivity and its genetic deficiency exacerbates muscle wasting; conversely, sestrin overexpression suffices to prevent atrophy. This protection occurs through mTORC1 inhibition, which upregulates autophagy, and AKT activation, which in turn inhibits FoxO-regulated ubiquitin-proteasome-mediated proteolysis. This study reveals sestrin as a central integrator of anabolic and degradative pathways preventing muscle wasting. Since sestrin also protected muscles against aging-induced atrophy, our findings have implications for sarcopenia.


Dysregulation of MiR-30a-3p/Gastrin Enhances Tumor Growth and Invasion throughSTAT3/MMP11 Pathway in Gastric Cancer.

  • Yan Liu‎ et al.
  • OncoTargets and therapy‎
  • 2020‎

Gastrin (GAST) is a well-known hormone regulating gastric biofunctions in the secretion of acid and maintaining its structural integrity. Furthermore, the dysregulation of GAST is also involved in the development of various forms of cancer. However, there are some limitations for illustrating the cellular regulation of GAST and its regulatory mechanisms in gastric malignant transformation and the potential epigenetic regulators systematically.


Study on age-dependent pre-existing 2009 pandemic influenza virus T and B cell responses from Chinese population.

  • Jin Lv‎ et al.
  • BMC infectious diseases‎
  • 2017‎

The outbreak of the 2009 H1N1 influenza pandemic (H1N1pdm) affected thousands of people in Mexico and the United States, and spread rapidly throughout the world from April 2009 to July 2010. To explore the age-specific prevalence of seroprotection against H1N1pdm infection, we estimated pre-existing humoral and cellular immunities of residents in Northern China against H1N1pdm and seasonal H1N1 virus in an age-dependent manner.


Identification of key transcription factors associated with cerebral ischemia‑reperfusion injury based on gene‑set enrichment analysis.

  • Ying-Ying Zhang‎ et al.
  • International journal of molecular medicine‎
  • 2019‎

Cerebral ischemia‑reperfusion injury (CIRI) usually causes detrimental complications following reperfusion therapy in stroke patients. The present study systematically investigated the regulatory mechanism involved in the pathogenesis of CIRI using gene set enrichment analysis of the transient middle cerebral artery occlusion mouse stroke model. The results revealed a total of 13 CIRI‑related transcription factors (TFs), including CCAAT enhancer binding protein b (Cebpb), Cebpa, early growth response‑1, Fos, Rela, Jund, signal transduction and activator of transcription 5a/b, transformation related protein 53, GLI family zinc finger 2 (Gli2), Sp3, TF AP‑2 α (Tfap2a) and spleen focus forming virus proviral integration oncogene (Spi1). To the best of our knowledge, five TFs (Cebpa, Gli2, Sp3, Tfap2a and Spi1) were the first to be reported associated with CIRI in the present study. The five novel CIRI‑related TFs were mainly associated with pathways of inflammation and responses to reperfusion, including the tumor necrosis factor signaling pathway (Gli2, Spi1 and Tfap2a, P=0.0035, 0.0035 and 0.048, respectively), interleuking‑17 signaling pathway (Cebpa, Gli2, Sp3, Spi1 and Tfap2a, P=0.019, 0.047, 0.019, 0.035 and 0.005, respectively) and fluid shear stress and atherosclerosis (Gli2, Sp3, Spi1 and Tfap2a, P=0.047, 0.046, 0.013 and 0.003, respectively). These results may improve understanding of the potential molecular mechanism underlying the pathogenesis of CIRI at the genome‑wide level.


Cell atlas of CCl 4-induced progressive liver fibrosis reveals stage-specific responses.

  • Peng-Cheng Guo‎ et al.
  • Zoological research‎
  • 2023‎

Chronic liver injury leads to progressive liver fibrosis and ultimately cirrhosis, a major cause of morbidity and mortality worldwide. However, there are currently no effective anti-fibrotic therapies available, especially for late-stage patients, which is partly attributed to the major knowledge gap regarding liver cell heterogeneity and cell-specific responses in different fibrosis stages. To reveal the multicellular networks regulating mammalian liver fibrosis from mild to severe phenotypes, we generated a single-nucleus transcriptomic atlas encompassing 49 919 nuclei corresponding to all main liver cell types at different stages of murine carbon tetrachloride (CCl 4)-induced progressive liver fibrosis. Integrative analysis distinguished the sequential responses to injury of hepatocytes, hepatic stellate cells and endothelial cells. Moreover, we reconstructed cell-cell interactions and gene regulatory networks implicated in these processes. These integrative analyses uncovered previously overlooked aspects of hepatocyte proliferation exhaustion and disrupted pericentral metabolic functions, dysfunction for clearance by apoptosis of activated hepatic stellate cells, accumulation of pro-fibrotic signals, and the switch from an anti-angiogenic to a pro-angiogenic program during CCl 4-induced progressive liver fibrosis. Our dataset thus constitutes a useful resource for understanding the molecular basis of progressive liver fibrosis using a relevant animal model.


Ischemia Reperfusion Injury after Gradual versus Rapid Flow Restoration for Middle Cerebral Artery Occlusion Rats.

  • Wan-Wan Xu‎ et al.
  • Scientific reports‎
  • 2018‎

Ischemia-reperfusion injury (IRI) is an important cause of adverse prognosis after recanalization in patients with acute occlusion of major intracranial artery (AOMIA). Here, we provided data indicating that gradual flow restoration (GFR) would be superior to rapid flow restoration (RFR) in alleviating cerebral IRIs in middle cerebral artery occlusion (MCAO) rats. A total of 94 MCAO rats with 15, 30 and 60-minute occlusion were randomly assigned to receive either GFR or RFR intervention. There were significant differences between GFR and RFR group in mean neurological severity score (1.02 versus 1.28; p < 0.05), median infarct ratio (0.016 versus 0.12; p < 0.001), median neuronal apoptosis ratio (1.81 versus 14.46; p < 0.001), and mean histopathological abnormality score (0.92 versus 1.66; p < 0.001). In addition, these differences were mainly distributed in 30-minute and 60-minute occlusion rats, not in 15-minute occlusion rats. These results indicated that GFR rather than RFR could effectively alleviate cerebral IRIs in MCAO rats, especially in rats with longer occlusion duration, suggesting that GFR may be particularly applicable to AOMIA patients who are presented to neurointerventionalists in the later-time of recanalization therapy window.


Pulmonary immune responses to 2009 pandemic influenza A (H1N1) virus in mice.

  • Jin Lv‎ et al.
  • BMC infectious diseases‎
  • 2014‎

Well-characterized mice models will afford a cheaper, easy-handling opportunity for a more comprehensive understanding of 2009 influenza A (H1N1) virus's pathogenesis potential. We aimed to provide a robust description of pulmonary immune responses in the mice infected by the virus.


Kinetics of pulmonary immune cells, antibody responses and their correlations with the viral clearance of influenza A fatal infection in mice.

  • Jin Lv‎ et al.
  • Virology journal‎
  • 2014‎

Fatal influenza A virus infection is a major threat to public health throughout the world. Lung macrophages and neutrophils have critical roles for both the pathogenesis and viral clearance of fatal viral infections. These are complicated by the interaction of innate immunity and adaptive immunity against viral infection. In this study, we investigated the overall kinetics of lung macrophages, neutrophils, CD4⁺T cells, CD8⁺T cells, CD38⁺ cells, and CD138⁺ cells, the levels of antibody and cytokine responses, both in the early and late phases of fatal infection with A/PR/8/34 (H1N1) virus in mice. The changes in lung viral load were also evaluated. We found that pulmonary macrophages and neutrophils both accumulated in the early and late phases of fatal infections and they positively correlated with the lung and serum antibody titers, and negatively correlated with the viral load locally. The secretion of IL-6 might relate to high numbers of macrophages and neutrophils in the early infection. The work implies that pulmonary macrophages, neutrophils and the antibody response all have an essential role in virus elimination of fatal influenza A viral infection. These findings may have implications for the development of prophylactic and therapeutic strategies in fatal influenza A viral infection. Further evaluation of the cooperation among macrophages, neutrophils and antibody responses in eliminating the virus with fatal infection is needed.


Condylar Degradation from Decreased Occlusal Loading following Masticatory Muscle Atrophy.

  • Zhan Shi‎ et al.
  • BioMed research international‎
  • 2018‎

The masticatory muscles are the most important contributor to bite force, and the temporomandibular joint (TMJ) receives direct occlusal loading. The present study aimed to investigate condylar remodeling after masseter muscle atrophy in rats.


A three serum miRNA panel as diagnostic biomarkers of radiotherapy-related metastasis in non-small cell lung cancer.

  • Jin Lv‎ et al.
  • Oncology letters‎
  • 2020‎

Serum microRNAs (miRNAs) have been implicated as noninvasive biomarkers for lung cancer diagnosis. However, there are no sensitive and specific biomarkers for the detection of radiotherapy-related non-small cell lung cancer (NSCLC) metastasis. The present study aimed to investigate the role of three serum miRNAs, namely miRNA (miR)-130a, miR-25 and miR-191*, in diagnosing NSCLC, and their biological functions in radiation-mediated development of metastatic properties in A549 cells. To determine this, serum samples were collected from 84 patients with NSCLC and 42 age- and sex-matched healthy controls. Differential expression of serum miRNAs was analyzed by quantitative PCR. Significant associations between miRNA expression and overall survival of patients with NSCLC were identified using the Cox proportional regression model. A receiver operating characteristic curve was generated to evaluate diagnostic accuracy. The functions of miR-130a, miR-25 and miR-191* in lung cancer cells were studied by transfecting A549 cells with miRNA mimics and inhibitors. The results of the present study demonstrated that the expression levels of miR-130a, miR-25 and miR-191* in the serum of patients with NSCLC were increased compared with those in healthy controls, and these increases were associated with advanced age (≥60 years), radiotherapy, histological type (squamous carcinoma), low survival rate and low median survival time. Additionally, irradiation induced the upregulation of miR-130a, miR-25 and miR-191* expression in A549 cells in vitro and in a xenograft mouse model. Irradiation also promoted the invasiveness of A549 cells in vitro and metastasis in vivo. In conclusion, miR-130a, miR-25 and miR-191* may be potential biomarkers for the diagnosis of patients with NSCLC and may serve oncogenic roles in radiation-mediated metastasis of NSCLC.


Influencing Mechanism of Nod-Like Receptor Protein 3 Inflammasome Activation in A375 Cell Activity in Human Cutaneous Malignant Melanoma.

  • Akebaier Sulaiman‎ et al.
  • Journal of immunology research‎
  • 2022‎

This work was to investigate mechanism by which mir-22 targeting nod-like receptor protein 3 (NLRP3) inflammasome affected activity of human skin malignant melanoma (MM) A375 cells. Twenty-four mice were rolled into a control group (Group X) and an experimental group (Group Y) randomly. Without treatment in Group X, Group Y established MM model. After cell transfection, the mice were divided into group A (blank group), group B (negative group), group C (miR-22 mimics group), group D (miR-22 inhibitor group), and group E (miR-22 inhibitor+siNLRP3 group). The results were summarized as follows. The level of miR-22 mRNA in Group Y was obviously lower than that in Group X, and levels of NLRP3 and caspase-1 mRNA and NLRP3 and caspase-1 protein in Group Y were greatly higher than those in Group X (P < 0.05). The mRNA levels of miR-22 mRNA in group C were much higher in contrast to those in group A, and the mRNA levels of NLRP3 and caspase-1 were lower. The contrast results in group D and group A were the opposite, P < 0.05. The levels of NLRP3 and caspase-1 proteins in group C were greatly elevated, and those in group D were decreased compared with those in group A (P < 0.05). Therefore, miR-22 may target and inhibit the activation of the NLRP3 inflammasome to reduce the activity of cutaneous malignant melanoma A375 cells.


The facilitating role of phycospheric heterotrophic bacteria in cyanobacterial phosphonate availability and Microcystis bloom maintenance.

  • Liang Zhao‎ et al.
  • Microbiome‎
  • 2023‎

Phosphonates are the main components in the global phosphorus redox cycle. Little is known about phosphonate metabolism in freshwater ecosystems, although rapid consumption of phosphonates has been observed frequently. Cyanobacteria are often the dominant primary producers in freshwaters; yet, only a few strains of cyanobacteria encode phosphonate-degrading (C-P lyase) gene clusters. The phycosphere is defined as the microenvironment in which extensive phytoplankton and heterotrophic bacteria interactions occur. It has been demonstrated that phytoplankton may recruit phycospheric bacteria based on their own needs. Therefore, the establishment of a phycospheric community rich in phosphonate-degrading-bacteria likely facilitates cyanobacterial proliferation, especially in waters with scarce phosphorus. We characterized the distribution of heterotrophic phosphonate-degrading bacteria in field Microcystis bloom samples and in laboratory cyanobacteria "phycospheres" by qPCR and metagenomic analyses. The role of phosphonate-degrading phycospheric bacteria in cyanobacterial proliferation was determined through coculturing of heterotrophic bacteria with an axenic Microcystis aeruginosa strain and by metatranscriptomic analysis using field Microcystis aggregate samples.


Gut microbiome profile of Chinese hypertension patients with and without type 2 diabetes mellitus.

  • Hongying Ding‎ et al.
  • BMC microbiology‎
  • 2023‎

The coexistence of hypertension and type 2 diabetes mellitus (T2DM) may largely increase the risk for cardiovascular disease. However, there is no clear consensus on the association between hypertension and the risk of diabetes. Gut microbiota plays important roles in the development of hypertension and T2DM, but whether there is difference between hypertension patients with or without T2DM has not been explored yet.


Collagen I Induces Preeclampsia-Like Symptoms by Suppressing Proliferation and Invasion of Trophoblasts.

  • Yinglin Feng‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Preeclampsia is a common obstetric disorder affecting 2-8% of pregnancy worldwide. Fibrosis is an important histological change occurring in preeclamptic placenta, and might depend on the excess deposition of collagen I. However, the role of fibrotic placenta and collagen I in the pathogenesis of preeclampsia remains unclear. Therefore, we analyzed the collagen deposition and the expression of Collagen I in human placenta by Masson staining, Sirius red staining and western blotting. Further, the role of collagen I in preeclampsia pathogenesis was studied in C57BL/6 mice. HTR-8/SVneo cells were used to investigate the mechanisms underlying the effects of collagen I in trophoblasts by transcriptome sequencing and pharmacological agonists. Human preeclamptic placenta exhibited a significantly higher degree of fibrosis in stem villi and terminal villi than normal placenta, and was characterized by collagen I deposition. In vivo, a single injection of collagen I on gestational day 0.5 led to an increase in systolic pressure of pregnant mice from gestational days 4.5-17.5, to a decrease in weight and number of embryos, and to enhanced placental collagen I expression and degree of fibrosis compared with control mice. In vitro, collagen I attenuated the proliferation and invasion of HTR-8SV/neo cells. This effect could be reversed by treatment with agonists of ERK and β-catenin. Moreover, transcriptome sequencing demonstrated that signaling pathways related to cell proliferation and invasion were significantly downregulated in HTR-8SV/neo cells. Thus, we propose that collagen I induced preeclampsia-like symptoms by suppressing the proliferation and invasion of trophoblasts through inhibition of the ERK phosphorylation and WNT/β-catenin signaling pathways. Our findings could pave the way to the discovery of small-molecule inhibitors for preeclampsia treatment and future studies with larger sample size are required.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: