Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Allele-specific expression and high-throughput reporter assay reveal functional genetic variants associated with alcohol use disorders.

  • Xi Rao‎ et al.
  • Molecular psychiatry‎
  • 2021‎

Genome-wide association studies (GWAS) of complex traits, such as alcohol use disorders (AUD), usually identify variants in non-coding regions and cannot by themselves distinguish whether the associated variants are functional or in linkage disequilibrium with the functional variants. Transcriptome studies can identify genes whose expression differs between alcoholics and controls. To test which variants associated with AUD may cause expression differences, we integrated data from deep RNA-seq and GWAS of four postmortem brain regions from 30 subjects with AUD and 30 controls to analyze allele-specific expression (ASE). We identified 88 genes with differential ASE in subjects with AUD compared to controls. Next, to test one potential mechanism contributing to the differential ASE, we analyzed single nucleotide polymorphisms (SNPs) in the 3' untranslated regions (3'UTR) of these genes. Of the 88 genes with differential ASE, 61 genes contained 437 SNPs in the 3'UTR with at least one heterozygote among the subjects studied. Using a modified PASSPORT-seq (parallel assessment of polymorphisms in miRNA target-sites by sequencing) assay, we identified 25 SNPs that affected RNA levels in a consistent manner in two neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Many of these SNPs are in binding sites of miRNAs and RNA-binding proteins, indicating that these SNPs are likely causal variants of AUD-associated differential ASE. In sum, we demonstrate that a combination of computational and experimental approaches provides a powerful strategy to uncover functionally relevant variants associated with the risk for AUD.


RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants.

  • Hai Lin‎ et al.
  • Genome biology‎
  • 2019‎

Single nucleotide variants (SNVs) in intronic regions have yet to be systematically investigated for their disease-causing potential. Using known pathogenic and neutral intronic SNVs (iSNVs) as training data, we develop the RegSNPs-intron algorithm based on a random forest classifier that integrates RNA splicing, protein structure, and evolutionary conservation features. RegSNPs-intron showed excellent performance in evaluating the pathogenic impacts of iSNVs. Using a high-throughput functional reporter assay called ASSET-seq (ASsay for Splicing using ExonTrap and sequencing), we evaluate the impact of RegSNPs-intron predictions on splicing outcome. Together, RegSNPs-intron and ASSET-seq enable effective prioritization of iSNVs for disease pathogenesis.


Highly robust model of transcription regulator activity predicts breast cancer overall survival.

  • Chuanpeng Dong‎ et al.
  • BMC medical genomics‎
  • 2020‎

While several multigene signatures are available for predicting breast cancer prognosis, particularly in early stage disease, effective molecular indicators are needed, especially for triple-negative carcinomas, to improve treatments and predict diagnostic outcomes. The objective of this study was to identify transcriptional regulatory networks to better understand mechanisms giving rise to breast cancer development and to incorporate this information into a model for predicting clinical outcomes.


The Access Technology Program of the Indiana Clinical Translational Sciences Institute (CTSI): A model to facilitate access to cutting-edge technologies across a state.

  • Christie M Orschell‎ et al.
  • Journal of clinical and translational science‎
  • 2020‎

Access to cutting-edge technologies is essential for investigators to advance translational research. The Indiana Clinical and Translational Sciences Institute (CTSI) spans three major and preeminent universities, four large academic campuses across the state of Indiana, and is mandate to provide best practices to a whole state.


Cryopreservation Preserves Cell-Type Composition and Gene Expression Profiles in Bone Marrow Aspirates From Multiple Myeloma Patients.

  • Duojiao Chen‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Single-cell RNA sequencing reveals gene expression differences between individual cells and also identifies different cell populations that are present in the bulk starting material. To obtain an accurate assessment of patient samples, single-cell suspensions need to be generated as soon as possible once the tissue or sample has been collected. However, this requirement poses logistical challenges for experimental designs involving multiple samples from the same subject since these samples would ideally be processed at the same time to minimize technical variation in data analysis. Although cryopreservation has been shown to largely preserve the transcriptome, it is unclear whether the freeze-thaw process might alter gene expression profiles in a cell-type specific manner or whether changes in cell-type proportions might also occur. To address these questions in the context of multiple myeloma clinical studies, we performed single-cell RNA sequencing (scRNA-seq) to compare fresh and frozen cells isolated from bone marrow aspirates of six multiple myeloma patients, analyzing both myeloma cells (CD138+) and cells constituting the microenvironment (CD138-). We found that cryopreservation using 90% fetal calf serum and 10% dimethyl sulfoxide resulted in highly consistent gene expression profiles when comparing fresh and frozen samples from the same patient for both CD138+ myeloma cells (R ≥ 0.96) and for CD138- cells (R ≥ 0.9). We also demonstrate that CD138- cell-type proportions showed minimal alterations, which were mainly related to small differences in immune cell subtype sensitivity to the freeze-thaw procedures. Therefore, when processing fresh multiple myeloma samples is not feasible, cryopreservation is a useful option in single-cell profiling studies.


RNA alternative splicing impacts the risk for alcohol use disorder.

  • Rudong Li‎ et al.
  • Molecular psychiatry‎
  • 2023‎

Alcohol use disorder (AUD) is a complex genetic disorder characterized by problems arising from excessive alcohol consumption. Identifying functional genetic variations that contribute to risk for AUD is a major goal. Alternative splicing of RNA mediates the flow of genetic information from DNA to gene expression and expands proteome diversity. We asked whether alternative splicing could be a risk factor for AUD. Herein, we used a Mendelian randomization (MR)-based approach to identify skipped exons (the predominant splicing event in brain) that contribute to AUD risk. Genotypes and RNA-seq data from the CommonMind Consortium were used as the training dataset to develop predictive models linking individual genotypes to exon skipping in the prefrontal cortex. We applied these models to data from the Collaborative Studies on Genetics of Alcoholism to examine the association between the imputed cis-regulated splicing outcome and the AUD-related traits. We identified 27 exon skipping events that were predicted to affect AUD risk; six of these were replicated in the Australian Twin-family Study of Alcohol Use Disorder. Their host genes are DRC1, ELOVL7, LINC00665, NSUN4, SRRM2 and TBC1D5. The genes downstream of these splicing events are enriched in neuroimmune pathways. The MR-inferred impacts of the ELOVL7 skipped exon on AUD risk was further supported in four additional large-scale genome-wide association studies. Additionally, this exon contributed to changes of gray matter volumes in multiple brain regions, including the visual cortex known to be involved in AUD. In conclusion, this study provides strong evidence that RNA alternative splicing impacts the susceptibility to AUD and adds new information on AUD-relevant genes and pathways. Our framework is also applicable to other types of splicing events and to other complex genetic disorders.


Intron retention-induced neoantigen load correlates with unfavorable prognosis in multiple myeloma.

  • Chuanpeng Dong‎ et al.
  • Oncogene‎
  • 2021‎

Neoantigen peptides arising from genetic alterations may serve as targets for personalized cancer vaccines and as positive predictors of response to immune checkpoint therapy. Mutations in genes regulating RNA splicing are common in hematological malignancies leading to dysregulated splicing and intron retention (IR). In this study, we investigated IR as a potential source of tumor neoantigens in multiple myeloma (MM) patients and the relationship of IR-induced neoantigens (IR-neoAg) with clinical outcomes. MM-specific IR events were identified in RNA-sequencing data from the Multiple Myeloma Research Foundation CoMMpass study after removing IR events that also occurred in normal plasma cells. We quantified the IR-neoAg load by assessing IR-induced novel peptides that were predicted to bind to major histocompatibility complex (MHC) molecules. We found that high IR-neoAg load was associated with poor overall survival in both newly diagnosed and relapsed MM patients. Further analyses revealed that poor outcome in MM patients with high IR-neoAg load was associated with high expression levels of T-cell co-inhibitory molecules and elevated interferon signaling activity. We also found that MM cells exhibiting high IR levels had lower MHC-II protein abundance and treatment of MM cells with a spliceosome inhibitor resulted in increased MHC-I protein abundance. Our findings suggest that IR-neoAg may represent a novel biomarker of MM patient clinical outcome and further that targeting RNA splicing may serve as a potential therapeutic strategy to prevent MM immune escape and promote response to checkpoint blockade.


Epigenetic changes on rat chromosome 4 contribute to disparate alcohol drinking behavior in alcohol-preferring and -nonpreferring rats.

  • John Paul Spence‎ et al.
  • Alcohol (Fayetteville, N.Y.)‎
  • 2020‎

Paternal alcohol abuse is a well-recognized risk factor for the development of an alcohol use disorder (AUD). In addition to genetic and environmental risk factors, heritable epigenetic factors also have been proposed to play a key role in the development of AUD. However, it is not clear whether epigenetic factors contribute to the genetic inheritance in families affected by AUD. We used reciprocal crosses of the alcohol-preferring (P) and -nonpreferring (NP) rat lines to test whether epigenetic factors also impacted alcohol drinking in up to two generations of offspring.


Estrogen-Dependent Upregulation of Adcyap1r1 Expression in Nucleus Accumbens Is Associated With Genetic Predisposition of Sex-Specific QTL for Alcohol Consumption on Rat Chromosome 4.

  • John Paul Spence‎ et al.
  • Frontiers in genetics‎
  • 2018‎

Humans show sex differences related to alcohol use disorders (AUD). Animal model research has the potential to provide important insight into how sex differences affect alcohol consumption, particularly because female animals frequently drink more than males. In previous work, inbred strains of the selectively bred alcohol-preferring (P) and non-preferring (NP) rat lines revealed a highly significant quantitative trait locus (QTL) on rat chromosome 4, with a logarithm of the odds score of 9.2 for alcohol consumption. Recently, interval-specific congenic strains (ISCS) were developed by backcrossing the congenic P.NP line to inbred P (iP) rats to further refine the chromosome 4 QTL region. Two ISCS sub-strains, ISCS-A and ISCS-B, were obtained with a narrowed QTL, where the smallest region of overlap consisted of 8.9 Mb in ISCS-B. Interestingly, we found that females from both ISCS lines consumed significantly less alcohol than female iP controls (p < 0.05), while no differences in alcohol consumption were observed between male ISCS and iP controls. RNA-sequencing was performed on the nucleus accumbens of alcohol-naïve female ISCS-B and iP rats, which revealed differentially expressed genes (DEG) with greater than 2-fold change and that were functionally relevant to behavior. These DEGs included down-regulation of Oxt, Asb4, Gabre, Gabrq, Chat, Slc5a7, Slc18a8, Slc10a4, and Ngfr, and up-regulation of Ttr, Msln, Mpzl2, Wnt6, Slc17a7, Aldh1a2, and Gstm2. Pathway analysis identified significant alterations in gene networks controlling nervous system development and function, as well as cell signaling, GABA and serotonin receptor signaling and G-protein coupled receptor signaling. In addition, β-estradiol was identified as the most significant upstream regulator. The expression levels of estrogen-responsive genes that mapped to the QTL interval and have been previously associated with alcohol consumption were measured using RT-qPCR. We found that expression of the Adcyap1r1 gene, encoding the pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor, was upregulated in female ISCS-B compared to female iP controls, while no differences were exhibited in males. In addition, sequence variants in the Adcyap1r1 promoter region showed a differential response to estrogen stimulation in vitro. These findings demonstrate that rat chromosome 4 QTL contains genetic variants that respond to estrogen and are associated with female alcohol consumption.


regSNPs-ASB: A Computational Framework for Identifying Allele-Specific Transcription Factor Binding From ATAC-seq Data.

  • Siwen Xu‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Expression quantitative trait loci (eQTL) analysis is useful for identifying genetic variants correlated with gene expression, however, it cannot distinguish between causal and nearby non-functional variants. Because the majority of disease-associated SNPs are located in regulatory regions, they can impact allele-specific binding (ASB) of transcription factors and result in differential expression of the target gene alleles. In this study, our aim was to identify functional single-nucleotide polymorphisms (SNPs) that alter transcriptional regulation and thus, potentially impact cellular function. Here, we present regSNPs-ASB, a generalized linear model-based approach to identify regulatory SNPs that are located in transcription factor binding sites. The input for this model includes ATAC-seq (assay for transposase-accessible chromatin with high-throughput sequencing) raw read counts from heterozygous loci, where differential transposase-cleavage patterns between two alleles indicate preferential transcription factor binding to one of the alleles. Using regSNPs-ASB, we identified 53 regulatory SNPs in human MCF-7 breast cancer cells and 125 regulatory SNPs in human mesenchymal stem cells (MSC). By integrating the regSNPs-ASB output with RNA-seq experimental data and publicly available chromatin interaction data from MCF-7 cells, we found that these 53 regulatory SNPs were associated with 74 potential target genes and that 32 (43%) of these genes showed significant allele-specific expression. By comparing all of the MCF-7 and MSC regulatory SNPs to the eQTLs in the Genome-Tissue Expression (GTEx) Project database, we found that 30% (16/53) of the regulatory SNPs in MCF-7 and 43% (52/122) of the regulatory SNPs in MSC were also in eQTL regions. The enrichment of regulatory SNPs in eQTLs indicated that many of them are likely responsible for allelic differences in gene expression (chi-square test, p-value < 0.01). In summary, we conclude that regSNPs-ASB is a useful tool for identifying causal variants from ATAC-seq data. This new computational tool will enable efficient prioritization of genetic variants identified as eQTL for further studies to validate their causal regulatory function. Ultimately, identifying causal genetic variants will further our understanding of the underlying molecular mechanisms of disease and the eventual development of potential therapeutic targets.


Genetic Regulation of Human isomiR Biogenesis.

  • Guanglong Jiang‎ et al.
  • Cancers‎
  • 2023‎

MicroRNAs play a critical role in regulating gene expression post-transcriptionally. Variations in mature microRNA sequences, known as isomiRs, arise from imprecise cleavage and nucleotide substitution or addition. These isomiRs can target different mRNAs or compete with their canonical counterparts, thereby expanding the scope of miRNA post-transcriptional regulation. Our study investigated the relationship between cis-acting single-nucleotide polymorphisms (SNPs) in precursor miRNA regions and isomiR composition, represented by the ratio of a specific 5'-isomiR subtype to all isomiRs identified for a particular mature miRNA. Significant associations between 95 SNP-isomiR pairs were identified. Of note, rs6505162 was significantly associated with both the 5'-extension of hsa-miR-423-3p and the 5'-trimming of hsa-miR-423-5p. Comparison of breast cancer and normal samples revealed that the expression of both isomiRs was significantly higher in tumors than in normal tissues. This study sheds light on the genetic regulation of isomiR maturation and advances our understanding of post-transcriptional regulation by microRNAs.


Intron-Retention Neoantigen Load Predicts Favorable Prognosis in Pancreatic Cancer.

  • Chuanpeng Dong‎ et al.
  • JCO clinical cancer informatics‎
  • 2022‎

High tumor mutation burden (TMB) in many cancer types is associated with the production of tumor-specific neoantigens, a favorable outcome and response to immune checkpoint blockade (ICB) therapy. Besides mutation-derived neoantigens, aberrant intron retention also produces tumor neopeptides that could trigger an immune response. The relationship between intron-retention-derived tumor neoantigens (IR-neoAg) and clinical outcomes in pancreatic cancer remains uncertain. Here, we quantify IR-neoAg in pancreatic cancer and evaluate whether IR-neoAg load might serve as a biomarker for selecting patients who may benefit from ICB therapy.


Functional 3'-UTR Variants Identify Regulatory Mechanisms Impacting Alcohol Use Disorder and Related Traits.

  • Andy B Chen‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Although genome-wide association studies (GWAS) have identified loci associated with alcohol consumption and alcohol use disorder (AUD), they do not identify which variants are functional. To approach this, we evaluated the impact of variants in 3' untranslated regions (3'-UTRs) of genes in loci associated with substance use and neurological disorders using a massively parallel reporter assay (MPRA) in neuroblastoma and microglia cells. Functionally impactful variants explained a higher proportion of heritability of alcohol traits than non-functional variants. We identified genes whose 3'UTR activities are associated with AUD and alcohol consumption by combining variant effects from MPRA with GWAS results. We examined their effects by evaluating gene expression after CRISPR inhibition of neuronal cells and stratifying brain tissue samples by MPRA-derived 3'-UTR activity. A pathway analysis of differentially expressed genes identified inflammation response pathways. These analyses suggest that variation in response to inflammation contributes to the propensity to increase alcohol consumption.


Differential Splicing of Skipped Exons Predicts Drug Response in Cancer Cell Lines.

  • Edward Simpson‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2021‎

Alternative splicing of pre-mRNA transcripts is an important regulatory mechanism that increases the diversity of gene products in eukaryotes. Various studies have linked specific transcript isoforms to altered drug response in cancer; however, few algorithms have incorporated splicing information into drug response prediction. In this study, we evaluated whether basal-level splicing information could be used to predict drug sensitivity by constructing doxorubicin-sensitivity classification models with splicing and expression data. We detailed splicing differences between sensitive and resistant cell lines by implementing quasi-binomial generalized linear modeling (QBGLM) and found altered inclusion of 277 skipped exons. We additionally conducted RNA-binding protein (RBP) binding motif enrichment and differential expression analysis to characterize cis- and trans-acting elements that potentially influence doxorubicin response-mediating splicing alterations. Our results showed that a classification model built with skipped exon data exhibited strong predictive power. We discovered an association between differentially spliced events and epithelial-mesenchymal transition (EMT) and observed motif enrichment, as well as differential expression of RBFOX and ELAVL RBP family members. Our work demonstrates the potential of incorporating splicing data into drug response algorithms and the utility of a QBGLM approach for fast, scalable identification of relevant splicing differences between large groups of samples.


Comprehensive Cis-Regulation Analysis of Genetic Variants in Human Lymphoblastoid Cell Lines.

  • Ying Wang‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Genetic variants can influence the expression of mRNA and protein. Genetic regulatory loci such as expression quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs) exist in several species. However, it remains unclear how human genetic variants regulate mRNA and protein expression. Here, we characterized six mechanistic models for the genetic regulatory patterns of single-nucleotide polymorphisms (SNPs) and their actions on post-transcriptional expression. Data from Yoruba HapMap lymphoblastoid cell lines were analyzed to identify human cis-eQTLs and pQTLs, as well as protein-specific QTLs (psQTLs). Our results indicated that genetic regulatory loci primarily affected mRNA and protein abundance in patterns where the two were well-correlated. While this finding was observed in both humans and mice (57.5% and 70.3%, respectively), the genetic regulatory patterns differed between species, implying evolutionary differences. Mouse SNPs generally targeted changes in transcript expression (51%), whereas in humans, they largely regulated protein abundance, independent of transcription levels (55.9%). The latter independent function can be explained by psQTLs. Our analysis suggests that local functional genetic variants in the human genome mainly modulate protein abundance independent of mRNA levels through post-transcriptional mechanisms. These findings clarify the impact of genetic variation on phenotype, which is of particular relevance to disease risk and treatment response.


Bioinformatics detection of modulators controlling splicing factor-dependent intron retention in the human brain.

  • Steven X Chen‎ et al.
  • Human mutation‎
  • 2022‎

Alternative RNA splicing is an important means of genetic control and transcriptome diversity. However, when alternative splicing events are studied independently, coordinated splicing modulated by common factors is often not recognized. As a result, the molecular mechanisms of how splicing regulators promote or repress splice site recognition in a context-dependent manner are not well understood. The functional coupling between multiple gene regulatory layers suggests that splicing is modulated by additional genetic or epigenetic components. Here, we developed a bioinformatics approach to identify causal modulators of splicing activity based on the variation of gene expression in large RNA sequencing datasets. We applied this approach in a neurological context with hundreds of dorsolateral prefrontal cortex samples. Our model is strengthened with the incorporation of genetic variants to impute gene expression in a Mendelian randomization-based approach. We identified novel modulators of the splicing factor SRSF1, including UIMC1 and the long noncoding RNA CBR3-AS1, that function over dozens of SRSF1 intron retention splicing targets. This strategy can be widely used to identify modulators of RNA-binding proteins involved in tissue-specific alternative splicing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: