Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

Characterization of a Carbonyl Reductase from Rhodococcus erythropolis WZ010 and Its Variant Y54F for Asymmetric Synthesis of (S)-N-Boc-3-Hydroxypiperidine.

  • Xiangxian Ying‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

The recombinant carbonyl reductase from Rhodococcus erythropolis WZ010 (ReCR) demonstrated strict (S)-stereoselectivity and catalyzed the irreversible reduction of N-Boc-3-piperidone (NBPO) to (S)-N-Boc-3-hydroxypiperidine [(S)-NBHP], a key chiral intermediate in the synthesis of ibrutinib. The NAD(H)-specific enzyme was active within broad ranges of pH and temperature and had remarkable activity in the presence of higher concentration of organic solvents. The amino acid residue at position 54 was critical for the activity and the substitution of Tyr54 to Phe significantly enhanced the catalytic efficiency of ReCR. The kcat/Km values of ReCR Y54F for NBPO, (R/S)-2-octanol, and 2-propanol were 49.17 s-1 mM-1, 56.56 s-1 mM-1, and 20.69 s-1 mM-1, respectively. In addition, the (S)-NBHP yield was as high as 95.92% when whole cells of E. coli overexpressing ReCR variant Y54F catalyzed the asymmetric reduction of 1.5 M NBPO for 12 h in the aqueous/(R/S)-2-octanol biphasic system, demonstrating the great potential of ReCR variant Y54F for practical applications.


Isostreptazolin and sannaphenol, two new metabolites from Streptomyces sannanensis.

  • Dan Zheng‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2012‎

Two new compounds, isostreptazolin (1) and sannaphenol (2), were isolated from the culture broth of Streptomyces sannanensis and their structures elucidated on the basis of 1D and 2D NMR as well as MS, IR and UV spectroscopic data analysis. The cytotoxic activity of 1 and 2 were evaluated. Both compounds were inactive against H460 and HeLa cell lines at 100 mM.


Thymoquinone Inhibits the Migration and Invasive Characteristics of Cervical Cancer Cells SiHa and CaSki In Vitro by Targeting Epithelial to Mesenchymal Transition Associated Transcription Factors Twist1 and Zeb1.

  • Jun Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2017‎

Cervical cancer is one of the most common gynecological malignant tumors worldwide, for which chemotherapeutic strategies are limited due to their non-specific cytotoxicity and drug resistance. The natural product thymoquinone (TQ) has been reported to target a vast number of signaling pathways in carcinogenesis in different cancers, and hence is regarded as a promising anticancer molecule. Inhibition of epithelial to mesenchymal transition (EMT) regulators is an important approach in anticancer research. In this study, TQ was used to treat the cervical cancer cell lines SiHa and CaSki to investigate its effects on EMT-regulatory proteins and cancer metastasis. Our results showed that TQ has time-dependent and dose-dependent cytotoxic effects, and it also inhibits the migration and invasion processes in different cervical cancer cells. At the molecular level, TQ treatment inhibited the expression of Twist1, Zeb1 expression, and increased E-Cadherin expression. Luciferase reporter assay showed that TQ decreases the Twist1 and Zeb1 promoter activities respectively, indicating that Twist1 and Zeb1 might be the direct target of TQ. TQ also increased cellular apoptosis in some extent, but apoptotic genes/proteins we tested were not significant affected. We conclude that TQ inhibits the migration and invasion of cervical cancer cells, probably via Twist1/E-Cadherin/EMT or/and Zeb1/E-Cadherin/EMT, among other signaling pathways.


Fungal Metabolite Asperaculane B Inhibits Malaria Infection and Transmission.

  • Guodong Niu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Mosquito-transmitted Plasmodium parasites cause millions of people worldwide to suffer malaria every year. Drug-resistant Plasmodium parasites and insecticide-resistant mosquitoes make malaria hard to control. Thus, the next generation of antimalarial drugs that inhibit malaria infection and transmission are needed. We screened our Global Fungal Extract Library (GFEL) and obtained a candidate that completely inhibited Plasmodium falciparum transmission to Anopheles gambiae. The candidate fungal strain was determined as Aspergillus aculeatus. The bioactive compound was purified and identified as asperaculane B. The concentration of 50% inhibition on P. falciparum transmission (IC50) is 7.89 µM. Notably, asperaculane B also inhibited the development of asexual P. falciparum with IC50 of 3 µM, and it is nontoxic to human cells. Therefore, asperaculane B is a new dual-functional antimalarial lead that has the potential to treat malaria and block malaria transmission.


Nutritional Attributes and Phenolic Composition of Flower and Bud of Sophora japonica L. and Robinia pseudoacacia L.

  • Jing Tian‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Sophora japonica L. (SJL) and Robinia pseudoacacia L. (RPL) are widely cultivated in China. However, the utilization of their main by-products are limited due to a lack of comprehensive nutritional attributes. Herein, the proximate composition, mineral elements, fatty acids, amino acids, monosaccharides, and phenolics were analyzed to investigate the nutritional attributes of SJL and RPL. Dietary fiber was the main ingredient in SJL and RPL, followed by protein and lipids. The content of Fe in SJL and RPL was highest, especially in flowers of SJL, reaching about 1179.51 mg/kg. The total unsaturated fatty acids accounted for 89.67% of the bud of SJL. Meanwhile, the essential amino acids contents of the flower and bud of SJL and RPL accounted for 35.95-40.59% of total amino acids. The flower of SJL (373.75 mg/g) exhibited the most abundant monosaccharides. Meanwhile, the total phenolics and flavonoid contents in the buds of SJL and RPL were significantly higher than that of the flower, implying the buds possessed better biological activity. Moreover, the bud of SJL possessed the most abundant phenolics. The results provided a reference for the development of functional food derived from SJL and RPL.


β-Cyclodextrin-Polyacrylamide Hydrogel for Removal of Organic Micropollutants from Water.

  • Xia Song‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Water pollution by various toxic substances remains a serious environmental problem, especially the occurrence of organic micropollutants including endocrine disruptors, pharmaceutical pollutants and naphthol pollutants. Adsorption process has been an effective method for pollutant removal in wastewater treatment. However, the thermal regeneration process for the most widely used activated carbon is costly and energy-consuming. Therefore, there has been an increasing need to develop alternative low-cost and effective adsorption materials for pollutant removal. Herein, β-cyclodextrin (β-CD), a cheap and versatile material, was modified with methacrylate groups by reacting with methacryloyl chloride, giving an average degree of substitution of 3 per β-CD molecule. β-CD-methacrylate, which could function as a crosslinker, was then copolymerized with acrylamide monomer via free-radical copolymerization to form β-CD-polyacrylamide (β-CD-PAAm) hydrogel. Interestingly, in the structure of the β-CD-PAAm hydrogel, β-CD is not only a functional unit binding pollutant molecules through inclusion complexation, but also a structural unit crosslinking PAAm leading to the formation of the hydrogel 3D networks. Morphological studies showed that β-CD-PAAm gel had larger pore size than the control PAAm gel, which was synthesized using conventional crosslinker instead of β-CD-methacrylate. This was consistent with the higher swelling ratio of β-CD-PAAm gel than that of PAAm gel (29.4 vs. 12.7). In the kinetic adsorption studies, phenolphthalein, a model dye, and bisphenol A, propranolol hydrochloride, and 2-naphthol were used as model pollutants from different classes. The adsorption data for β-CD-PAAm gel fitted well into the pseudo-second-order model. In addition, the thermodynamic studies revealed that β-CD-PAAm gel was able to effectively adsorb the different dye and pollutants at various concentrations, while the control PAAm gel had very low adsorption, confirming that the pollutant removal was due to the inclusion complexation between β-CD units and pollutant molecules. The adsorption isotherms of the different dye and pollutants by the β-CD-PAAm gel fitted well into the Langmuir model. Furthermore, the β-CD-PAAm gel could be easily recycled by soaking in methanol and reused without compromising its performance for five consecutive adsorption/desorption cycles. Therefore, the β-CD-PAAm gel, which combines the advantage of an easy-to-handle hydrogel platform and the effectiveness of adsorption by β-CD units, could be a promising pollutant removal system for wastewater treatment applications.


Anticancer Effect of STING Agonist-Encapsulated Liposomes on Breast Cancer.

  • Jibing Zhang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Breast cancer is one of the most common cancers worldwide, posing a serious threat to human health. Recently, innate immunity has become a widely discussed topic in antitumor research. The STING pathway is an important component of innate immunity, and several STING agonists have been developed and applied in antitumor research. Dimeric amidobenzimidazole (diABZI) is one STING agonist and is a nucleotide analog with low serological stability and cell membrane permeability. In this study, we prepared diABZI-encapsulated liposomes (dLNPs) using the ammonium sulfate gradient method. The average particle size of the dLNPs was 99.76 ± 0.230 nm, and the encapsulation efficiency was 58.29 ± 0.53%. Additionally, in vivo and in vitro assays showed that the dLNPs had a sustained-release effect and that the circulation time in vivo was longer than 48 h. The expression of IFN-β and IFN-γ was elevated in mice treated with dLNPs. Moreover, we found that dLNPs can recruit CD8+ T cells to tumor tissue and exert antitumor effects. The dLNPs-treated group showed the most significant efficacy: the average tumor volume was 231.46 mm3, which decreased by 78.16% and 54.47% compared to the PBS group and diABZI group. Meanwhile, the hemolysis rate of the dLNPs was 2%, showing high biocompatibility. In conclusion, dLNPs can effectively suppress tumor growth and possess great potential in breast cancer therapy.


Triterpenoids from the Leaves of Cyclocarya paliurus and Their Glucose Uptake Activity in 3T3-L1 Adipocytes.

  • Xiaoqin Liang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Four new dammarane triterpenoid saponins cypaliurusides Z1-Z4 (1-4) and eight known analogs (5-12) were isolated from the leaves of Cyclocarya paliurus. The structures of the isolated compounds were determined using a comprehensive analysis of 1D and 2D NMR and HRESIMS data. The docking study demonstrated that compound 10 strongly bonded with PTP1B (a potential drug target for the treatment of type-II diabetes and obesity), hydrogen bonds, and hydrophobic interactions, verifying the importance of sugar unit. The effects of the isolates on insulin-stimulated glucose uptake in 3T3-L1 adipocytes were evaluated and three dammarane triterpenoid saponins (6, 7 and 10) were found to enhance insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Furthermore, compounds 6, 7, and 10 exhibited potent abilities to promote insulin-stimulated glucose uptake in 3T3-L1 adipocytes in a dose-dependent manner. Thus, the abundant dammarane triterpenoid saponins from C. paliurus leaves exhibited stimulatory effects on glucose uptake with application potential as a antidiabetic treatment.


Effect of Acetylation of Two Cellulose Nanocrystal Polymorphs on Processibility and Physical Properties of Polylactide/Cellulose Nanocrystal Composite Film.

  • Tong Chen‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Polylactide (PLA) has become a popular alternative for petroleum-based plastics to reduce environmental pollution. The broader application of PLA is hampered by its brittle nature and incompatibility with the reinforcement phase. The aim of our work was to improve the ductility and compatibility of PLA composite film and investigate the mechanism by which nanocellulose enhances PLA polymer. Here, we present a robust PLA/nanocellulose hybrid film. Two different allomorphic cellulose nanocrystals (CNC-I and CNC-III) and their acetylated products (ACNC-I and ACNC-III) were used to realize better compatibility and mechanical performance in a hydrophobic PLA matrix. The tensile stress of the composite films with 3% ACNC-I and ACNC-III increased by 41.55% and 27.22% compared to pure PLA film, respectively. Compared to the CNC-I or CNC-III enhanced PLA composite films, the tensile stress of the films increased by 45.05% with 1% ACNC-I and 56.15% with 1% ACNC-III. In addition, PLA composite films with ACNCs showed better ductility and compatibility because the composite fracture gradually transitioned to a ductile fracture during the stretching process. As a result, ACNC-I and ACNC-III were found to be excellent reinforcing agents for the enhancement of the properties of polylactide composite film, and the replacement some petrochemical plastics with PLA composites would be very promising in actual life.


Genistein Modified with 8-Prenyl Group Suppresses Osteoclast Activity Directly via Its Prototype but Not Metabolite by Gut Microbiota.

  • Zuo-Cheng Qiu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Postmenopausal osteoporosis is a significant threat to human health globally. Genistein, a soy-derived isoflavone, is regarded as a promising anti-osteoporosis drug with the effects of promoting osteoblastogenesis and suppressing osteoclastogenesis. However, its oral bioavailability (6.8%) is limited by water solubility, intestinal permeability, and biotransformation. Fortunately, 8-prenelylated genistein (8PG), a derivative of genistein found in Erythrina Variegate, presented excellent predicted oral bioavailability (51.64%) with an improved osteoblastogenesis effect, although its effects on osteoclastogenesis and intestinal biotransformation were still unclear. In this study, an in vitro microbial transformation platform and UPLC-QTOF/MS analysis method were developed to explore the functional metabolites of 8PG. RANKL-induced RAW264.7 cells were utilized to evaluate the effects of 8PG on osteoclastogenesis. Our results showed that genistein was transformed into dihydrogenistein and 5-hydroxy equol, while 8PG metabolites were undetectable under the same conditions. The 8PG (10-6 M) was more potent in inhibiting osteoclastogenesis than genistein (10-5 M) and it down-regulated NFATC1, cSRC, MMP-9 and Cathepsin K. It was concluded that 8-prenyl plays an important role in influencing the osteoclast activity and intestinal biotransformation of 8PG, which provides evidence supporting the further development of 8PG as a good anti-osteoporosis agent.


The Synthesis, Characterization and Anti-Tumor Activity of a Cu-MOF Based on Flavone-6,2'-dicarboxylic Acid.

  • Jie Zhang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

A novel two-dimensional copper(II) framework (LDU-1), formulated as {[Cu2(L)2·2NMP}n (H2L = flavone-6,2'-dicarboxylic acid, NMP = N-Methyl pyrrolidone), has been constructed under solvothermal conditions and characterized by single-crystal X-ray diffraction, infrared spectroscopy (IR), thermogravimetric analysis and powder X-ray diffraction (PXRD). In the crystal structure, the Cu(II) shows hex-coordinated with the classical Cu paddle-wheel coordination geometry, and the flavonoid ligand coordinates with the Cu(II) ion in a bidentate bridging mode. Of particular interest of LDU-1 is the presence of anti-tumor activity against three human cancer cell lines including lung adenocarcinoma(A549), Michigan cancer foundation-7 (MCF-7), erythroleukemia (K562) and murine melanoma B16F10, indicating synergistic enhancement effects between metal ions and organic linkers. A cell cycle assay indicates that LDU-1 induces cells to arrest at S phase obviously at a lower concentration.


Nobiletin Intake Attenuates Hepatic Lipid Profiling and Oxidative Stress in HFD-Induced Nonalcoholic-Fatty-Liver-Disease Mice.

  • Zunli Ke‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Nobiletin (NOB) is a naturally occurring compound, commonly found in citrus peel, that shows hepatoprotective and lipid-reducing effects. However, the lipid biomarkers and the potential improvement mechanisms have not been adequately explored. Therefore, we investigated the ameliorative effect and the molecular mechanism of NOB on NAFLD induced by a high-fat diet in mice. The results showed that supplementation with NOB over 12 weeks markedly improved glucose tolerance, serum lipid profiles, inflammatory factors, hepatic steatosis, and oxidative stress. These beneficial effects were mainly related to reduced levels of potential lipid biomarkers including free fatty acids, diacylglycerols, triacylglycerols, and cholesteryl esters according to hepatic lipidomic analysis. Twenty lipids, including DGs and phosphatidylcholines, were identified as potential lipid biomarkers. Furthermore, RT-qPCR and Western blot analysis indicated that NOB inhibited the expression of lipogenesis-related factors such as SREBP-1c, SCD-1, and FAS, and upregulated the expression of lipid oxidation (PPARα) and cholesterol conversion (LXRα, CYP7A1, and CYP27A1) genes as well as antioxidation-related factors (Nucl-Nrf2, NQO1, HO-1, and GCLC), indicating that NOB intake may reduce lipid biosynthesis and increase lipid consumption to improve hepatic steatosis and oxidative stress. This study is beneficial for understanding the ameliorative effects of NOB on NAFLD.


Gastrodin and Gastrodigenin Improve Energy Metabolism Disorders and Mitochondrial Dysfunction to Antagonize Vascular Dementia.

  • Sha Wu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Vascular dementia (VD) is the second most common dementia syndrome worldwide, and effective treatments are lacking. Gastrodia elata Blume (GEB) has been used in traditional Chinese herbal medicine for centuries to treat cognitive impairment, ischemic stroke, epilepsy, and dizziness. Gastrodin (p-hydroxymethylphenyl-b-D-glucopyranoside, Gas) and Gastrodigenin (p-hydroxybenzyl alcohol, HBA) are the main bioactive components of GEB. This study explored the effects of Gas and HBA on cognitive dysfunction in VD and their possible molecular mechanisms. The VD model was established by bilateral common carotid artery ligation (2-vessel occlusion, 2-VO) combined with an intraperitoneal injection of sodium nitroprusside solution. One week after modeling, Gas (25 and 50 mg/kg, i.g.) and HBA (25 and 50 mg/kg, i.g.) were administered orally for four weeks, and the efficacy was evaluated. A Morris water maze test and passive avoidance test were used to observe their cognitive function, and H&E staining and Nissl staining were used to observe the neuronal morphological changes; the expressions of Aβ1-42 and p-tau396 were detected by immunohistochemistry, and the changes in energy metabolism in the brain tissue of VD rats were analyzed by targeted quantitative metabolomics. Finally, a Hippocampus XF analyzer measured mitochondrial respiration in H2O2-treated HT-22 cells. Our study showed that Gas and HBA attenuated learning memory dysfunction and neuronal damage and reduced the accumulation of Aβ1-42, P-Tau396, and P-Tau217 proteins in the brain tissue. Furthermore, Gas and HBA improved energy metabolism disorders in rats, involving metabolic pathways such as glycolysis, tricarboxylic acid cycle, and the pentose phosphate pathway, and reducing oxidative damage-induced cellular mitochondrial dysfunction. The above results indicated that Gas and HBA may exert neuroprotective effects on VD by regulating energy metabolism and mitochondrial function.


Thermal Preparation and Application of a Novel Silicon Fertilizer Using Talc and Calcium Carbonate as Starting Materials.

  • Yian Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

The deficiency of available silicon (Si) incurred by year-round agricultural and horticultural practices highlights the significance of Si fertilization for soil replenishment. This study focuses on a novel and economical route for the synthesis of Si fertilizer via the calcination method using talc and calcium carbonate (CaCO3) as starting materials. The molar ratio of talc to CaCO3 of 1:2.0, calcination temperature of 1150 °C and calcination time of 120 min were identified as the optimal conditions to maximize the available Si content of the prepared Si fertilizer. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) characterizations elucidate the principles of the calcination temperature-dependent microstructure evolution of Si fertilizers, and the akermanite Ca2Mg(Si2O7) and merwinite Ca3Mg(SiO4)2 were identified as the primary silicates products. The results of release and solubility experiments suggest the content of available metallic element and slow-release property of the Si fertilizer obtained at the optimum preparation condition (Si-OPC). The surface morphology and properties of Si-OPC were illuminated by the results of scanning electron microscope (SEM), surface area and nitrogen adsorption analysis. The acceleration action of CaCO3 in the decomposition process of talc was demonstrated by the thermogravimetry-differential scanning calorimetry (TG-DSC) test. The pot experiment corroborates that 5 g kg-1 soil Si-OPC application sufficed to facilitate the pakchoi growth by providing nutrient elements. This evidence indicates the prepared Si fertilizer as a promising candidate for Si-deficient soil replenishment.


Nicotine Inhibits the Cytotoxicity and Genotoxicity of NNK Mediated by CYP2A13 in BEAS-2B Cells.

  • Yulin Sun‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Both tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and nicotine can be metabolized by cytochrome P450 2A13 (CYP2A13). Previous studies have shown that nicotine has a potential inhibitory effect on the toxicity of NNK. However, due to the lack of CYP2A13 activity in conventional lung cell lines, there had been no systematic in vitro investigation for the key target organ, the lung. Here, BEAS-2B cells stably expressing CYP2A13 (B-2A13 cells) were constructed to investigate the effects of nicotine on the cytotoxicity and genotoxicity of NNK. The results showed more sensitivity for NNK-induced cytotoxicity in B-2A13 cells than in BEAS-2B and B-vector cells. NNK significantly induced DNA damage, cell cycle arrest, and chromosomal damage in B-2A13 cells, but had no significant effect on BEAS-2B cells and the vector control cells. The combination of different concentration gradient of nicotine without cytotoxic effects and a single concentration of NNK reduced or even counteracted the cytotoxicity and multi-dimensional genotoxicity in a dose-dependent manner. In conclusion, CYP2A13 caused the cytotoxicity and genotoxicity of NNK in BEAS-2B cells, and the addition of nicotine could inhibit the toxicity of NNK.


Identification and Determination of the Polyhydroxylated Alkaloids Compounds with α-Glucosidase Inhibitor Activity in Mulberry Leaves of Different Origins.

  • Tao Ji‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

Mulberry leaves have commonly been utilized in China as a herbal medicine for the treatment of diabetes for thousands of years. To evaluate the quality, an ultra-high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS) method was developed for identification of polyhydroxylated alkaloids with α-glucosidase inhibitor activity in mulberry leaf. As a result, five alkaloid compounds were identified or tentatively characterized. Among them, the compound 1-deoxynojirimycin (DNJ) was selected as the most typical and active chemical marker and quantified using an improved high performance liquid chromatography (HPLC) normal phase coupled with evaporative light scattering detector (ELSD) method. The developed method was fully validated in terms of linearity, sensitivity, precision and repeatability, as well as recovery, and subsequently applied to evaluate twenty-nine batches of mulberry leaves from different collections. From the analytical data it was discovered that the average content of DNJ is 1.53 mg/g, while the total contents of DNJ in the 29 mulberry leaf sample ranged from 0.20 to 3.88 mg/g, which suggested remarkable differences, although it reached the highest levels in early August. These data may provide an important reference for the quality of mulberry leaves used as herbal medicine for the treatment of diabetes or as a material to obtain the DNJ of α-glucosidase inhibitor or as a functional food.


Design, Synthesis and Evaluation of Hesperetin Derivatives as Potential Multifunctional Anti-Alzheimer Agents.

  • Bo Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2017‎

In this study we designed and synthesized a series of new hesperetin derivatives on the basis of the structural characteristics of acetylcholinesterase (AChE) dual-site inhibitors. The activity of the novel derivatives was also evaluated. Results showed that the synthesized hesperetin derivatives displayed stronger inhibitory activity against AChE and higher selectivity than butyrylcholine esterase (BuChE) (selectivity index values from 68 to 305). The Lineweaver-Burk plot and molecular docking study showed that these compounds targeted both the peripheral anionic site (PAS) and catalytic active site (CAS) of AChE. The derivatives also showed a potent self-induced β-amyloid (Aβ) aggregation inhibition and a peroxyl radical absorbance activity. Moreover, compound 4f significantly protected PC12 neurons against H₂O₂-induced cell death at low concentrations. Cytotoxicity assay showed that the low concentration of the derivatives does not affect the viability of the SH-SY5Y neurons. Thus, these hesperetin derivatives are potential multifunctional agents for further development for the treatment of Alzheimer's disease.


A Fluorescent Coumarin-Based Probe for the Fast Detection of Cysteine with Live Cell Application.

  • Rui-Feng Zeng‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2017‎

A new coumarin-based fluorescent probe, containing an allylic esters group, has been designed and synthesized for sensing cysteine in physiological pH. In this fluorescent probe, the coumarin was applied as the fluorophore and an allylic esters group was combined as both a fluorescence quencher and a recognition unit. The probe can selectively and sensitively detect cysteine (Cys) over homocysteine, glutathione, and other amino acids, and has a rapid response time of 30 min and a low detection limit of 47.7 nM. In addition, the probe could be applied for cell imaging with low cytotoxicity.


Design and Synthesis of Novel Betulin Derivatives Containing Thio-/Semicarbazone Moieties as Apoptotic Inducers through Mitochindria-Related Pathways.

  • Jiafeng Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Two new series of betulin derivatives with semicarbazone (7a-g) or thiosemicarbazone (8a-g) groups at the C-28 position were synthesized. All compounds were evaluated for their in vitro cytotoxicities in human hepatocellular carcinoma cells (HepG2), human breast carcinoma cells (MCF-7), human lung carcinoma cells (A549), human colorectal cells (HCT-116) and normal human gastric epithelial cells (GES-1). Among these compounds, 8f displayed the most potent cytotoxicity with an IC50 value of 5.86 ± 0.61 μM against MCF-7 cells. Furthermore, the preliminary mechanism studies in MCF-7 cells showed that compound 8f could trigger the intracellular mitochondrial-mediated apoptosis pathway by losing MMP level, which was related with the upregulation of Bax, P53 and cytochrome c expression; the downregulation of Bcl-2 expression; activation of the expression levels of caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9; and an increase in the amounts of intracellular reactive oxygen species. These results indicated that compound 8f may be used as a valuable skeleton structure for developing novel antitumor agents.


(-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection.

  • Annan Wu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

(1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this study, we found that EGCG directly binds to CypD and this interaction was investigated by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulation. (3) Results: SPR showed an affinity of 2.7 × 10-5 M. The binding sites of EGCG on CypD were mapped to three regions by 2D NMR titration, which are Region 1 (E23-V29), Region 2 (T89-G104) and Region 3 (G124-I133). Molecular docking showed binding interface consistent with 2D NMR titration. MD simulations revealed that at least two conformations of EGCG-CypD complex exist, one with E23, D27, L90 and V93 as the most contributed residues and E23, L5 and I133 for the other. The major driven force for EGCG-CypD binding are Van der Waals and electrostatic interactions. (4) Conclusions: These results provide the structural basis for EGCG-CypD interaction, which might be a potential mechanism of how EGCG protects mitochondrial functions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: