Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Phosphorus Starvation- and Zinc Excess-Induced Astragalus sinicus AsZIP2 Zinc Transporter Is Suppressed by Arbuscular Mycorrhizal Symbiosis.

  • Xianan Xie‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2021‎

Zinc (Zn) is one of the most essential micronutrients for plant growth and metabolism, but Zn excess can impair many basic metabolic processes in plant cells. In agriculture, crops often experience low phosphate (Pi) and high Zn double nutrient stresses because of inordinate agro-industrial activities, while the dual benefit of arbuscular mycorrhizal (AM) fungi protects plants from experiencing both deficient and toxic nutrient stresses. Although crosstalk between Pi and Zn nutrients in plants have been extensively studied at the physiological level, the molecular basis of how Pi starvation triggers Zn over-accumulation in plants and how AM plants coordinately modulate the Pi and Zn nutrient homeostasis remains to be elucidated. Here, we report that a novel AsZIP2 gene, a Chinese milk vetch (Astragalus sinicus) member of the ZIP gene family, participates in the interaction between Pi and Zn nutrient homeostasis in plants. Phylogenetic analysis revealed that this AsZIP2 protein was closely related to the orthologous Medicago MtZIP2 and Arabidopsis AtZIP2 transporters. Gene expression analysis indicated that AsZIP2 was highly induced in roots by Pi starvation or Zn excess yet attenuated by arbuscular mycorrhization in a Pi-dependent manner. Subcellular localization and heterologous expression experiments further showed that AsZIP2 encoded a functional plasma membrane-localized transporter that mediated Zn uptake in yeast. Moreover, overexpression of AsZIP2 in A. sinicus resulted in the over-accumulation of Zn concentration in roots at low Pi or excessive Zn concentrations, whereas AsZIP2 silencing lines displayed an even more reduced Zn concentration than control lines under such conditions. Our results reveal that the AsZIP2 transporter functioned in Zn over-accumulation in roots during Pi starvation or high Zn supply but was repressed by AM symbiosis in a Pi-dependent manner. These findings also provide new insights into the AsZIP2 gene acting in the regulation of Zn homeostasis in mycorrhizal plants through Pi signal.


Pb Transfer Preference of Arbuscular Mycorrhizal Fungus Rhizophagus irregularis in Morus alba under Different Light Intensities.

  • Wei Ren‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2022‎

Arbuscular mycorrhizal (AM) fungi can improve the lead (Pb) tolerance of host plants and accumulate intensive Pb in mycorrhizal roots. However, the detailed contribution of AM fungal extraradical hyphae to the plants' Pb uptake remains unknown. In this study, mulberry (Morus alba) colonized by the AM fungus (Rhizophagus irregularis) with light treatments were linked by fungal extraradical hyphae using a three-compartment system (pot test), and their differences in responding to Pb application were compared. Shading inhibited mulberry photosynthesis and the growth of mulberry. In this study, Pb application did not affect the colonization of R. irregularis when symbiosis had already formed as the root was not exposed to Pb during the colonization and formation of the AM fungal hyphae network. The R. irregularis preferred to transfer more Pb to the unshaded mulberry than to the shaded mulberry, a condition capable of providing more C supply for fungal survival than to low-light mulberry. The Pb transferred through the mycorrhizal pathway to mulberry had low mobility and might be compartmented in the root by R. irregularis until exceeding a threshold. The relatively high expressions of MaABCG16 with high Pb concentrations in plants suggest that MaABCG16 might play an important role in Pb translocation.


Effects of Arbuscular Mycorrhizal Fungi on the Growth and Root Cell Ultrastructure of Eucalyptus grandis under Cadmium Stress.

  • Yuxuan Kuang‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2023‎

Eucalyptus grandis (E. grandis) has been reported to form a symbiosis with arbuscular mycorrhizal fungi (AMF), which plays an important role in improving plant tolerance of heavy metal. However, the mechanism of how AMF intercept and transport cadmium (Cd) at the subcellular level in E. grandis still remains to be researched. In this study, a pot experiment was conducted to investigate the growth performance of E. grandis under Cd stress and Cd absorption resistance of AMF and explored the Cd localization in the root by using transmission electron microscopy and energy dispersive X-ray spectroscopy. The results showed that AMF colonization could enhance plant growth and photosynthetic efficiency of E. grandis and reduce the translocation factor of Cd under Cd stress. After being treated with 50, 150, 300, and 500 μM Cd, the translocation factor of Cd in E. grandis with AMF colonization decreased by 56.41%, 62.89%, 66.67%, and 42.79%, respectively. However, the mycorrhizal efficiency was significant only at low Cd concentrations (50, 150, and 300 μM). Under 500 μM Cd concentration condition, the colonization of AMF in roots decreased, and the alleviating effect of AMF was not significant. Ultrastructural observations showed that Cd is abundant in regular lumps and strips in the cross-section of E. grandis root cell. AMF protected plant cells by retaining Cd in the fungal structure. Our results suggested that AMF alleviated Cd toxicity by regulating plant physiology and altering the distribution of Cd in different cell sites.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: