Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

The genome of Medicago polymorpha provides insights into its edibility and nutritional value as a vegetable and forage legume.

  • Jiawen Cui‎ et al.
  • Horticulture research‎
  • 2021‎

Medicago polymorpha is a nutritious and palatable forage and vegetable plant that also fixes nitrogen. Here, we reveal the chromosome-scale genome sequence of M. polymorpha using an integrated approach including Illumina, PacBio and Hi-C technologies. We combined PacBio full-length RNA-seq, metabolomic analysis, structural anatomy analysis and related physiological indexes to elucidate the important agronomic traits of M. polymorpha for forage and vegetable usage. The assembled M. polymorpha genome consisted of 457.53 Mb with a long scaffold N50 of 57.72 Mb, and 92.92% (441.83 Mb) of the assembly was assigned to seven pseudochromosomes. Comparative genomic analysis revealed that expansion and contraction of the photosynthesis and lignin biosynthetic gene families, respectively, led to enhancement of nutritious compounds and reduced lignin biosynthesis in M. polymorpha. In addition, we found that several positively selected nitrogen metabolism-related genes were responsible for crude protein biosynthesis. Notably, the metabolomic results revealed that a large number of flavonoids, vitamins, alkaloids, and terpenoids were enriched in M. polymorpha. These results imply that the decreased lignin content but relatively high nutrient content of M. polymorpha enhance its edibility and nutritional value as a forage and vegetable. Our genomic data provide a genetic basis that will accelerate functional genomic and breeding research on M. polymorpha as well as other Medicago and legume plants.


Aquaporin-8 overexpression is involved in vascular structure and function changes in placentas of gestational diabetes mellitus patients.

  • Yanxing Shan‎ et al.
  • Open life sciences‎
  • 2022‎

To study the role and mechanism of aquaporin-8 (AQP8) in placental vascular development in gestational diabetes mellitus (GDM), hematoxylin-eosin staining and immunohistochemistry were utilized to analyze the histopathological changes in placentas in GDM patients. Transwell, CCK-8, and tube formation assays were performed to examine cell migration, proliferation, and tube formation. AQP8, vascular cell adhesion molecule 1 (VCAM-1), tumor necrosis factor alpha (TNF)-α, and vascular endothelial growth factor (VEGF)-A expression levels were investigated. Relative to the control group, the placentas in the GDM group showed morphological changes, the number of microvessels in the placental villi arterioles was significantly higher, and the area of microvessels in the arterioles of placental villi was significantly lower. The expression levels of VCAM-1, TNF-α, VEGF-A, and AQP8 in the GDM placentas and human umbilical vein endothelial cells (HUVECs) stimulated by high glucose were significantly higher than those in the control group, and AQP8 was located in placental endothelial cells. Overexpression of glucose and AQP8 inhibited tube formation, migration, and proliferation in HUVECs. High glucose levels can induce dysfunction in vascular endothelial cells and lead to pathological changes in the placental vascular structure in GDM. AQP8 overexpression in placental GDM can inhibit endothelial cell behavior, cause endothelial cell dysfunction, and further participate in the occurrence and development of GDM placental vascular lesions.


The Jasmine (Jasminum sambac) Genome Provides Insight into the Biosynthesis of Flower Fragrances and Jasmonates.

  • Gang Chen‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2023‎

Jasminum sambac (jasmine flower), a world-renowned plant appreciated for its exceptional flower fragrance, is of cultural and economic importance. However, the genetic basis of its fragrance is largely unknown. Here, we present the first de novogenome assembly of J. sambac with 550.12 Mb (scaffold N50 = 40.10 Mb) assembled into 13 pseudochromosomes. Terpene synthase (TPS) genes associated with flower fragrance are considerably amplified in the form of gene clusters through tandem duplications in the genome. Gene clusters within the salicylic acid/benzoic acid/theobromine (SABATH) and benzylalcohol O-acetyltransferase/anthocyanin O-hydroxycinnamoyltransferases/anthranilate N-hydroxycinnamoyl/benzoyltransferase/deacetylvindoline 4-O-acetyltransferase (BAHD) superfamilies were identified to be related to the biosynthesis of phenylpropanoid/benzenoid compounds. Several key genes involved in jasmonate biosynthesis were duplicated, causing an increase in copy numbers. In addition, multi-omics analyses identified various aromatic compounds and many genes involved in fragrance biosynthesis pathways. Furthermore, the roles of JsTPS3 in β-ocimene biosynthesis, as well as JsAOC1 and JsAOS in jasmonic acid biosynthesis, were functionally validated. The genome assembled in this study for J. sambac offers a basic genetic resource for studying floral scent and jasmonate biosynthesis, and provides a foundation for functional genomic research and variety improvements in Jasminum.


miR-1227-3p participates in the development of fetal growth restriction via regulating trophoblast cell proliferation and apoptosis.

  • Jiawen Cui‎ et al.
  • Scientific reports‎
  • 2022‎

Fetal growth restriction (FGR) is a common obstetric disease, which is harmful to the pregnant women and fetuses. It has many influencing factors, but the specific etiology is not clear. MiRNA plays an important role in the fetal growth and development. In this article, we use TaqMan Low-Density Array to screen and analyze the differently expressed miRNAs in FGR-affected placenta (n = 40) and the normal placenta (n = 40). A total of 139 abnormally expressed miRNAs in the FGR-affected placenta were identified, and miR-1227-3p was the most highly downregulated miRNA. Importantly, miR-1227-3p may promote the proliferation in HTR-8/SVneo cells, while inhibited the apoptosis of HTR-8/SVneo cells. DAVID was used to analyze the pathway enrichment of target genes of miR-1227-3p to predict its mechanism of action. Furthermore, the putative targets of miR-1227-3p were predicted using the TargetScan, PicTar, DIANA LAB, and miRWalk database. The potential expression of target genes of miR-1227-3p, including PRKAB2, AKT1, PIK3R3, and MKNK1 were significantly increased in FGR-affected placenta. Taken together, miR-1227-3p may participate in the development of FGR via regulating trophoblast cell proliferation and apoptosis by targeting genes involved in the insulin pathway. MiR-1227-3p may have a potential clinical value in the prevention and treatment of FGR, we need to study further to prove its value in the future.


Genome-Wide Identification of Circular RNAs in Arabidopsis thaliana.

  • Gang Chen‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Circular RNAs (circRNAs) are a family of transcripts with covalently closed circular structures and still largely unknown functions. Large numbers of circRNAs have been found in various biological processes in humans and animals, but fewer circRNAs have been identified in plants. We performed a genome-wide analysis of circRNAs in Arabidopsis thaliana via deep sequencing. We constructed 14 strand-specific libraries from 13 samples of plants from four developmental stages, four stress treatments, and five organs and a mixed sample across the lifespan. In total, we identified 5861 circRNAs, including 1275 novel ones, using the strict threshold of at least two unique back-spliced supporting reads. The circRNAs were non-randomly distributed in all chromosomes; most were exonic. Sequence similarity analysis of circRNAs between A. thaliana and four other species showed that some circRNAs are conserved in plants. Functional annotation indicated that many parent genes of circRNAs are involved in many fundamental processes including plant development, reproduction, and response to stimulus. In addition, a small proportion of circRNAs was shown to be potential targets of miRNAs, indicating that the circRNAs could interact with miRNAs to regulate gene expression. qRT-PCR analysis revealed that circRNAs displayed diverse expression patterns at different growth stages. Our results provide an important resource for continuing circRNA research in A. thaliana, and should enhance our understanding of circRNAs in plants.


Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures.

  • Zhaogeng Lu‎ et al.
  • Genome biology‎
  • 2021‎

Elevated temperatures can cause physiological, biochemical, and molecular responses in plants that can greatly affect their growth and development. Mutations are the most fundamental force driving biological evolution. However, how long-term elevations in temperature influence the accumulation of mutations in plants remains unknown.


Analysis and comprehensive comparison of PacBio and nanopore-based RNA sequencing of the Arabidopsis transcriptome.

  • Jiawen Cui‎ et al.
  • Plant methods‎
  • 2020‎

The number of studies using third-generation sequencing utilising Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) is rapidly increasing in many different research areas. Among them, plant full-length single-molecule transcriptome studies have mostly used PacBio sequencing, whereas ONT is rarely used. Therefore, in this study, we examined ONT RNA sequencing methods in plants. We performed a detailed evaluation of reads from PacBio, Nanopore direct cDNA (ONT Dc), and Nanopore PCR cDNA (ONT Pc) sequencing including characteristics of raw data and identification of transcripts. In addition, matched Illumina data were generated for comparison.


Transcriptomic Analysis Reveals Mechanisms of Sterile and Fertile Flower Differentiation and Development in Viburnum macrocephalum f. keteleeri.

  • Zhaogeng Lu‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Sterile and fertile flowers are an important evolutionary developmental (evo-devo) phenotype in angiosperm flowers, playing important roles in pollinator attraction and sexual reproductive success. However, the gene regulatory mechanisms underlying fertile and sterile flower differentiation and development remain largely unknown. Viburnum macrocephalum f. keteleeri, which possesses fertile and sterile flowers in a single inflorescence, is a useful candidate species for investigating the regulatory networks in differentiation and development. We developed a de novo-assembled flower reference transcriptome. Using RNA sequencing (RNA-seq), we compared the expression patterns of fertile and sterile flowers isolated from the same inflorescence over its rapid developmental stages. The flower reference transcriptome consisted of 105,683 non-redundant transcripts, of which 5,675 transcripts showed significant differential expression between fertile and sterile flowers. Combined with morphological and cytological changes between fertile and sterile flowers, we identified expression changes of many genes potentially involved in reproductive processes, phytohormone signaling, and cell proliferation and expansion using RNA-seq and qRT-PCR. In particular, many transcription factors (TFs), including MADS-box family members and ABCDE-class genes, were identified, and expression changes in TFs involved in multiple functions were analyzed and highlighted to determine their roles in regulating fertile and sterile flower differentiation and development. Our large-scale transcriptional analysis of fertile and sterile flowers revealed the dynamics of transcriptional networks and potentially key components in regulating differentiation and development of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri. Our data provide a useful resource for Viburnum transcriptional research and offer insights into gene regulation of differentiation of diverse evo-devo processes in flowers.


Sequence-dependent synergistic effect of aumolertinib-pemetrexed combined therapy on EGFR-mutant non-small-cell lung carcinoma with pre-clinical and clinical evidence.

  • Luyao Ao‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2022‎

Inevitably developed resistance of the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) limited its clinical benefit on non-small cell lung cancer (NSCLC). Upfront combination therapy is promising to prevent this resistance. Compelling clinical evidence indicated the failure of third-generation EGFR TKIs combined with either immunotherapy or antiangiogenic agents. In comparison, combined treatment of third-generation EGFR TKIs and chemotherapy might be a favorable choice. Herein, we systematically analyzed and compared the effects of pemetrexed and a novel third-generation EGFR TKI aumolertinib combined in different sequences, subsequently revealed the potential mechanisms and proved the optimal combination schedule with clinical retrospective study.


Identification of a novel anti‑heat shock cognate 71 kDa protein antibody in patients with Kawasaki disease.

  • Yabin Zhou‎ et al.
  • Molecular medicine reports‎
  • 2020‎

Kawasaki disease (KD) is an idiopathic form of acute systemic vasculitis, which clinically mimics febrile diseases. Although it has been hypothesized that immune system malfunction is associated with KD, its etiology remains unclear. The aim of the present study was to identify a KD‑associated antibody. Immunoproteomic methods were used to identify KD‑associated antigens that could be recognized in the sera of patients with KD. HeLa cells were used as an antigen source and KD sera were used as probe antibodies to determine the binding of the antibodies using an indirect immunofluorescence assay. Western blotting was performed to identify KD‑associated antigens in HeLa whole cell lysates. Eight out of 12 serum samples obtained from patients with KD demonstrated immunoreactive bands at ~70 kDa, which was later determined to be heat shock cognate 71 kDa protein (HSP7C) by mass spectrometry. The diagnostic value of serum anti‑HSP7C antibodies for KD was assessed using ELISA. Using a cut‑off value of 0.267, anti‑HSP7C antibodies were observed to be present in the sera of 60.00% (30/50) of patients with KD, in 21.05% (8/38) of non‑KD febrile controls, and in 5.26% (2/38) of healthy controls. High serum levels of anti‑HSP7C antibodies were detected in the peripheral circulation of patients with KD. To the best of our knowledge, the present study is the first to observe the high expression levels of anti‑HSP7C antibodies in patients with KD. Therefore, anti‑HSP7C antibodies may be used as a diagnostic marker to detect KD.


Genome-Wide Identification and Characterization of Long Non-Coding RNAs Associated with Floral Scent Formation in Jasmine (Jasminum sambac).

  • Zhaogeng Lu‎ et al.
  • Biomolecules‎
  • 2023‎

Long non-coding RNAs (lncRNAs) have emerged as curial regulators of diverse biological processes in plants. Jasmine (Jasminum sambac) is a world-renowned ornamental plant for its attractive and exceptional flower fragrance. However, to date, no systematic screening of lncRNAs and their regulatory roles in the production of the floral fragrance of jasmine flowers has been reported. In this study, we identified a total of 31,079 novel lncRNAs based on an analysis of strand-specific RNA-Seq data from J. sambac flowers at different stages. The lncRNAs identified in jasmine flowers exhibited distinct characteristics compared with protein-coding genes (PCGs), including lower expression levels, shorter transcript lengths, and fewer exons. Certain jasmine lncRNAs possess detectable sequence conservation with other species. Expression analysis identified 2752 differentially expressed lncRNAs (DE_lncRNAs) and 8002 DE_PCGs in flowers at the full-blooming stage. DE_lncRNAs could potentially cis- and trans-regulate PCGs, among which DE_lincRNAs and their targets showed significant opposite expression patterns. The flowers at the full-blooming stage are specifically enriched with abundant phenylpropanoids and terpenoids potentially contributed by DE_lncRNA cis-regulated PCGs. Notably, we found that many cis-regulated DE_lncRNAs may be involved in terpenoid and phenylpropanoid/benzenoid biosynthesis pathways, which potentially contribute to the production of jasmine floral scents. Our study reports numerous jasmine lncRNAs and identifies floral-scent-biosynthesis-related lncRNAs, which highlights their potential functions in regulating the floral scent formation of jasmine and lays the foundations for future molecular breeding.


miRNAs involved in the development and differentiation of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri.

  • Weixing Li‎ et al.
  • BMC genomics‎
  • 2017‎

Sterile and fertile flowers are important evolutionary developmental phenotypes in angiosperm flowers. The development of floral organs, critical in angiosperm reproduction, is regulated by microRNAs (miRNAs). However, the mechanisms underpinning the miRNA regulation of the differentiation and development of sterile and fertile flowers remain unclear.


Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees.

  • Li Wang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Aging is a universal property of multicellular organisms. Although some tree species can live for centuries or millennia, the molecular and metabolic mechanisms underlying their longevity are unclear. To address this, we investigated age-related changes in the vascular cambium from 15- to 667-y-old Ginkgo biloba trees. The ring width decreased sharply during the first 100 to 200 y, with only a slight change after 200 y of age, accompanied by decreasing numbers of cambial cell layers. In contrast, average basal area increment (BAI) continuously increased with aging, showing that the lateral meristem can retain indeterminacy in old trees. The indole-3-acetic acid (IAA) concentration in cambial cells decreased with age, whereas the content of abscisic acid (ABA) increased significantly. In addition, cell division-, cell expansion-, and differentiation-related genes exhibited significantly lower expression in old trees, especially miR166 and HD-ZIP III interaction networks involved in cambial activity. Disease resistance-associated genes retained high expression in old trees, along with genes associated with synthesis of preformed protective secondary metabolites. Comprehensive evaluation of the expression of genes related to autophagy, senescence, and age-related miRNAs, together with analysis of leaf photosynthetic efficiencies and seed germination rates, demonstrated that the old trees are still in a healthy, mature state, and senescence is not manifested at the whole-plant level. Taken together, our results reveal that long-lived trees have evolved compensatory mechanisms to maintain a balance between growth and aging processes. This involves continued cambial divisions, high expression of resistance-associated genes, and continued synthetic capacity of preformed protective secondary metabolites.


Physiological, Transcriptomic, and Metabolic Responses of Ginkgo biloba L. to Drought, Salt, and Heat Stresses.

  • Bang Chang‎ et al.
  • Biomolecules‎
  • 2020‎

Ginkgo biloba L. is highly adaptable and resistant to a range of abiotic stressors, allowing its growth in various environments. However, it is unclear how G. biloba responds to common environmental stresses. We explored the physiological, transcriptomic, and metabolic responses of G. biloba to short-term drought, salt, and heat stresses. Proline, H2O2, and ABA contents, along with CAT activity, increased under all three types of stress. SOD activity increased under salt and heat stresses, while soluble protein and IAA contents decreased under drought and salt stresses. With respect to metabolites, D-glyceric acid increased in response to drought and salt stresses, whereas isomaltose 1, oxalamide, and threonine 2 increased under drought. Piceatannol 2,4-hydroxybutyrate and 1,3-diaminopropane increased under salt stress, whereas 4-aminobutyric acid 1 and galactonic acid increased in response to heat stress. Genes regulating nitrogen assimilation were upregulated only under drought, while the GRAS gene was upregulated under all three types of stressors. ARF genes were downregulated under heat stress, whereas genes encoding HSF and SPL were upregulated. Additionally, we predicted that miR156, miR160, miR172, and their target genes participate in stress responses. Our study provides valuable data for studying the multilevel response to drought, salinity, and heat in G. biloba.


Cyanidin-3-o-glucoside (C3G) inhibits vascular leakage regulated by microglial activation in early diabetic retinopathy and neovascularization in advanced diabetic retinopathy.

  • Fangling Zhao‎ et al.
  • Bioengineered‎
  • 2021‎

Cyanidin-3-O-glucoside (C3G) is a kind of anthocyanin which shows strong anti-inflammation, anti-tumor and anti-oxidant properties. This paper was designed to explore the potential effects of C3G on diabetic retinopathy (DR). C57BL/6 mice were administrated with streptozotocin (STZ) or vehicle control for the establishment of diabetic models. To simulate hyperglycemia and hypoxia, D-glucose (30 mM) and CoCl2 (200 μm/l) were utilized to treat HRECs, respectively. The migration, invasion, inflammation and tube formation abilities of cells were evaluated with the adoption of wound healing, transwell, ELISA and tube formation assays, respectively. Besides, immunofluorescence staining was utilized to detect proliferation and retinal vessels. Evans blue permeation assay were performed to evaluate the vascular leakage in DR mice. Moreover, western blot and qPCR were used to quantify the mRNA and protein expressions of ionized calcium-binding adapter molecule (Iba)-1 and tight junction proteins. Results showed that C3G alleviated the inflammation, microglial activation and angiogenesis in DR mice. Moreover, the proliferation and inflammation of BV2 cells induced by high glucose (HG) were suppressed by C3G. Evans blue permeation assay demonstrated the potency of C3G in attenuating vascular leakage. In addition, C3G suppressed the migration, invasion and angiogenesis of human retinal endothelial cells (HRECs) DR model in vitro.By confirming the role of C3G in inhibiting vascular leakage regulated by microglia activation in early DR and angiogenesis in advanced DR, this study pointed out the potential of C3G as a therapeutic drug for DR management.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: