Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

lncRNA SOX2-OT regulates laryngeal cancer cell proliferation, migration and invasion and induces apoptosis by suppressing miR-654.

  • Guang Li‎ et al.
  • Experimental and therapeutic medicine‎
  • 2020‎

Laryngeal carcinoma is the most common type of malignant tumor in the head and neck. Long non-coding RNAs (lncRNAs) serve crucial roles in numerous biological processes. The present study aimed to investigate the role of lncRNA SOX2-OT in laryngeal cancer and to reveal the underlying mechanisms. Reverse transcription-quantitative PCR assays were used to measure the expression levels of SOX2-OT in the laryngeal cell lines. Furthermore, cell proliferation, apoptosis, migration and invasion were assessed by CCK-8, flow cytometry, wound healing and Transwell assays, respectively. Western blot assay was performed to detect the protein expressions. In addition, a dual-luciferase reporter assay was performed to confirm the direct interaction between SOX2-OT and microRNA (miR)-654. The data demonstrated that SOX2-OT level were significantly increased in the laryngeal cell lines. Furthermore, SOX2-OT silencing markedly promoted apoptosis and suppressed the proliferation, migration and invasion of TU-177 cells. A dual-luciferase reporter assay revealed that miR-654 was a direct target of SOX2-OT. Moreover, downregulation of miR-654 could attenuate cell apoptosis and accelerate cell proliferation, migration and invasion in TU-177 cells. In summary, the present study reported that knockdown of SOX2-OT could suppress cell proliferation, migration and invasion, and induce apoptosis in laryngeal cancer by targeting miR-654.


Vestibular Function in Children and Adults Before and After Unilateral or Sequential Bilateral Cochlear Implantation.

  • Ruirui Guan‎ et al.
  • Frontiers in neurology‎
  • 2021‎

Background: Cochlear implantation (CI) helps patients with severe or profound sensorineural hearing loss (SNHL) restore hearing and speech abilities. However, some patients exhibit abnormal vestibular functions with symptoms such as dizziness or balance disorders, after CI. Whether age at CI and CI approach (unilateral or sequential bilateral) affect vestibular functions in users with cochlear implants remains unclear. Objectives: To investigate the vestibular functions in children and adults before and after unilateral or sequential bilateral CI. Materials and Methods: Thirty-seven patients with severe or profound SNHL who were candidates for a first- or second-side CI were divided into three groups: first-side CI-implanted adults (≥18 years), first-side CI-implanted children (6-17 years), and second-side CI-implanted children (6-17 years). All cases were implanted with the round window approach to minimize damage to the intra-cochlear structures. The caloric test, vestibular evoked myogenic potential (VEMP) test, video head impulse test (vHIT), Dizziness Handicap Inventory (DHI), Pediatric Vestibular Symptom Questionnaire (PVSQ), and audiometric tests were performed before and 1 month after CI. Results: The abnormal rates of caloric test and VEMP test after CI in the first-side CI-implanted adults and children significantly increased compared with those before CI. The pre-implantation VEMP test showed significantly higher abnormal rates between first- and second-side CI-implanted children. No other significant differences of abnormal rates between first- and second-side CI-implanted children or between first-side CI-implanted adults and children were found. In second-side CI-implanted children, PVSQ scores significantly increased at day 3 post-implantation but decreased at day 30. Conclusion: CI has a negative effect on the results of caloric and VEMP tests, but not on vHIT, indicating that the otolith and low-frequency semicircular canal (SCC) are more vulnerable to damage from CI. The alterations of vestibular functions resulting from CI surgery may be independent of age at CI and CI approach (unilateral or sequential bilateral). Long-term impacts on the vestibular function from CI surgery, as well as the chronic electrical stimulation to the cochlea, are still to be investigated.


TaCOLD1 defines a new regulator of plant height in bread wheat.

  • Huixue Dong‎ et al.
  • Plant biotechnology journal‎
  • 2019‎

Plant height is among the most important agronomic traits that influence crop yield. However, in addition to the Rht-1 alleles, the molecular basis of plant height in bread wheat remains largely unclear. Based on wheat gene expression profiling analysis, we identify a light-regulated gene from bread wheat, designated as TaCOLD1, whose encoding protein is homologous to cold sensor COLD1 in rice. We show that TaCOLD1 protein is localized to the endoplasmic reticulum (ER) and plasma membrane. Phenotypic analyses show that overexpression of a mutated form of TaCOLD1 (M187K) in bread wheat cultivar Kenong199 (Rht-B1b) background resulted in an obvious reduction in plant height. Further, we demonstrate that the hydrophilic loop of TaCOLD1 (residues 178-296) can interact with TaGα-7A (the α subunit of heterotrimeric G protein) protein but not TaGα-1B, and the mutation (M187K) in TaCOLD1 remarkably enhances its interaction with TaGα-7A. Physical interaction analyses show that the C-terminal region of TaGα-7A, which is lacking in the TaGα-1B protein, is necessary for its interaction with TaCOLD1. Intriguingly, the C-terminal region of TaGα-7A is also physically associated with the TaDEP1 protein (an atypical Gγ subunit). Significantly, we discover that TaCOLD1 and mTaCOLD1 (M187K) can interfere with the physical association between TaGα-7A and TaDEP1. Together, this study reveals that TaCOLD1 acts as a novel regulator of plant height through interfering with the formation of heterotrimeric G protein complex in bread wheat and is a valuable target for the engineering of wheat plant architecture.


A TRIM insertion in the promoter of Ms2 causes male sterility in wheat.

  • Chuan Xia‎ et al.
  • Nature communications‎
  • 2017‎

The male-sterile ms2 mutant has been known for 40 years and has become extremely important in the commercial production of wheat. However, the gene responsible for this phenotype has remained unknown. Here we report the map-based cloning of the Ms2 gene. The Ms2 locus is remarkable in several ways that have implications in basic biology. Beyond having no functional annotation, barely detectable transcription in fertile wild-type wheat plants, and accumulated destructive mutations in Ms2 orthologs, the Ms2 allele in the ms2 mutant has acquired a terminal-repeat retrotransposon in miniature (TRIM) element in its promoter. This TRIM element is responsible for the anther-specific Ms2 activation that confers male sterility. The identification of Ms2 not only unravels the genetic basis of a historically important breeding trait, but also shows an example of how a TRIM element insertion near a gene can contribute to genetic novelty and phenotypic plasticity.


Overexpression of TaJAZ1 increases powdery mildew resistance through promoting reactive oxygen species accumulation in bread wheat.

  • Yexing Jing‎ et al.
  • Scientific reports‎
  • 2019‎

Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for wheat yield. However, the molecular mechanisms underlying wheat resistance against powdery mildew remain largely unclear. In this study, we report the role of JASMONATE-ZIM domain protein TaJAZ1 in regulating bread wheat resistance against powdery mildew. We generated transgenic bread wheat lines over-expressing the truncated TaJAZ1 without the Jas motif, which showed increased TaPR1/2 gene expression and reactive oxygen species accumulation, leading to enhanced resistance against powdery mildew. Simultaneously, we identified a Jasmonic acid (JA)-induced bHLH transcription factor TaMYC4 in bread wheat. We demonstrated that TaJAZ1 directly interacts with TaMYC4 to repress its transcriptional activity. Meanwhile, we show that the ZIM domain of TaJAZ1 interacts with the C terminus of TaNINJA, whereas the N-terminal EAR motif of TaNINJA interacts with the transcriptional co-repressor TaTPL. Collectively, our work pinpoints TaJAZ1 as a favorable gene to enhance bread wheat resistance toward powdery mildew, and provides a molecular framework for JA signaling in bread wheat.


The HD-ZIP II Transcription Factors Regulate Plant Architecture through the Auxin Pathway.

  • Guanhua He‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The homeodomain-leucine zipper (HD-ZIP) family transcription factors play important roles in plant growth and development. However, the underlying mechanisms remain largely unclear. Here we found that ATHB2, encoding a HD-ZIP transcription factor, is an early auxin responsive gene. Phenotypic analyses show that overexpression of ATHB2 impairs plant architecture, including reduced plant height and small leaves, and also reduces auxin response in leaves when grown in soil. Simultaneously, the seedlings with chemical induction of ATHB2 exhibit abnormal root gravitropism, a typical auxin-related phenotype. We further show that the auxin response pattern is altered in roots of the inducible ATHB2 seedlings. Consistently, the transcript levels of some auxin biosynthetic and transport genes are significantly decreased in these transgenic seedlings. Further, protein and promoter sequence analyses in common wheat showed that the HD-ZIP II subfamily transcription factors have highly conserved motifs and most of these encoding gene promoters contain the canonical auxin-responsive elements. Expression analyses confirm that some of these HD-ZIP II genes are indeed regulated by auxin in wheat. Together, our results suggest that the HD-ZIP II subfamily transcription factors regulate plant development possibly through the auxin pathway in plants.


Nicotine induced ototoxicity in rat cochlear organotypic cultures.

  • Yi Zhao‎ et al.
  • Translational neuroscience‎
  • 2021‎

Epidemiological evidence has shown that smoking is associated with an increased risk of hearing loss. However, the underlying mechanisms regarding the impact of nicotine on the cochlea remain unclear. This study aimed to investigate the cytotoxic effects of nicotine on cochlear cells using cultured cochlear basilar membranes. Cochlear basilar membranes were isolated from newborn rats, cultured, and treated with 1-100 ng/mL nicotine for 48 h. Cuticular plates and stereocilia bundle staining were used to evaluate hair cell (HC) loss. Spiral ganglion neuron and acoustic nerve fiber staining were assessed to evaluate cochlear neural injury. Scanning electron microscopy and transmission electron microscopy imaging were employed to examine cochlear ultrastructural changes. Our results showed that compared to spiral ganglia and nerve fibers, HCs are more susceptible to nicotine-induced toxicity. HC loss was more severe in the basal turn than in the middle and apical turns, while nerve fibers and spiral ganglion cells were morphologically maintained. Ultrastructural changes revealed disordered and damaged stereocilia, swelling and decreased mitochondrial density, swelling, and degranulation of the endoplasmic reticulum. Our results suggest that nicotine causes HCs' degeneration and loss and may have implications for smoking-related hearing loss.


MIR156-Targeted SPL9 Is Phosphorylated by SnRK2s and Interacts With ABI5 to Enhance ABA Responses in Arabidopsis.

  • Huixue Dong‎ et al.
  • Frontiers in plant science‎
  • 2021‎

The miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors play key roles in regulating plant development, but little is known about their function in abscisic acid (ABA) signaling. Here, we report that the miR156-targeted SPLs enhance ABA responses and contribute to the inhibition of pre-harvest sprouting. We find that SPL9 directly activates the expression of ABA responsive genes through binding to their promoters. SPL9 was further shown to physically interact with ABSCISIC ACID INSENSITIVE 5 (ABI5), a master transcription factor in ABA signaling, thus promoting its association with the promoters of ABA responsive genes. Furthermore, we reveal that the protein kinases SnRK2s interact with and phosphorylate SPL9, which is essential for its role in the activation of ABA responses. Together, our results disclose a SnRK2s-SPLs-ABI5 regulatory module in ABA signaling in Arabidopsis.


Epac1 Signaling Pathway Mediates the Damage and Apoptosis of Inner Ear Hair Cells after Noise Exposure in a Rat Model.

  • Fanfan Sun‎ et al.
  • Neuroscience‎
  • 2021‎

To investigate the role of the exchange protein directly activated by cAMP (Epac) signaling pathway in inner ear hair cell damage and apoptosis after noise exposure, we analyzed the expression level of Epac1 in a rat model of noise-induced hearing loss (NIHL), based on rat exposure to a 4-kHz and 106-dB sound pressure level (SPL) for 8 h. Loss of outer hair cells (OHCs), mitochondrial lesions, and hearing loss were examined after treatment with the Epac agonist, 8-CPT, or the Epac inhibitor, ESI-09. The effects of 8-CPT and ESI-09 on cell proliferation and apoptosis were examined by CCK-8 assays, holographic microscopy imaging, and Annexin-V FITC/PI staining in HEI-OC1 cells. The effects of 8-CPT and ESI-09 on Ca2+ entry were evaluated by confocal Ca2+ fluorescence measurement. We found that the expression level of Epac1 was significantly increased in the cochlear tissue after noise exposure. In NIHL rats, 8-CPT increased the loss of OHCs, mitochondrial lesions, and hearing loss compared to control rats, while ESI-09 produced the opposite effects. Oligomycin was used to induce HEI-OC1 cell damage in vitro. In HEI-OC1 cells treated with oligomycin, 8-CPT and ESI-09 increased and reduced cell apoptosis, respectively. Moreover, 8-CPT promoted Ca2+ uptake in HEI-OC1 cells, while ESI-09 inhibited this process. In conclusion, our data provide strong evidence that the Epac1 signaling pathway mediates early pathological damage in NIHL, and that Epac1 inhibition protects from NIHL, identifying Epac1 as a new potential therapeutic target for NIHL.


Knockdown of YAP inhibits growth in Hep-2 laryngeal cancer cells via epithelial-mesenchymal transition and the Wnt/β-catenin pathway.

  • Xiaomin Tang‎ et al.
  • BMC cancer‎
  • 2019‎

Yes-associated protein (YAP) plays a crucial role in tumour development and it is the main effector of the Hippo signalling pathway. However, the mechanism underlying YAP downregulation in laryngeal cancer is still unclear. In our previous study, we found that YAP, compared with adjacent tissues, was expressed higher in laryngeal cancer and was also closely associated with histological differentiation, TNM stage and poor prognosis.


Caffeine Induces Autophagy and Apoptosis in Auditory Hair Cells via the SGK1/HIF-1α Pathway.

  • Xiaomin Tang‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Caffeine is being increasingly used in daily life, such as in drinks, cosmetics, and medicine. Caffeine is known as a mild stimulant of the central nervous system, which is also closely related to neurologic disease. However, it is unknown whether caffeine causes hearing loss, and there is great interest in determining the effect of caffeine in cochlear hair cells. First, we explored the difference in auditory brainstem response (ABR), organ of Corti, stria vascularis, and spiral ganglion neurons between the control and caffeine-treated groups of C57BL/6 mice. RNA sequencing was conducted to profile mRNA expression differences in the cochlea of control and caffeine-treated mice. A CCK-8 assay was used to evaluate the approximate concentration of caffeine. Flow cytometry, TUNEL assay, immunocytochemistry, qRT-PCR, and Western blotting were performed to detect the effects of SGK1 in HEI-OC1 cells and basilar membranes. In vivo research showed that 120 mg/ kg caffeine injection caused hearing loss by damaging the organ of Corti, stria vascularis, and spiral ganglion neurons. RNA-seq results suggested that SGK1 might play a vital role in ototoxicity. To confirm our observations in vitro, we used the HEI-OC1 cell line, a cochlear hair cell-like cell line, to investigate the role of caffeine in hearing loss. The results of flow cytometry, TUNEL assay, immunocytochemistry, qRT-PCR, and Western blotting showed that caffeine caused autophagy and apoptosis via SGK1 pathway. We verified the interaction between SGK1 and HIF-1α by co-IP. To confirm the role of SGK1 and HIF-1α, GSK650394 was used as an inhibitor of SGK1 and CoCl2 was used as an inducer of HIF-1α. Western blot analysis suggested that GSK650394 and CoCl2 relieved the caffeine-induced apoptosis and autophagy. Together, these results indicated that caffeine induces autophagy and apoptosis in auditory hair cells via the SGK1/HIF-1α pathway, suggesting that caffeine may cause hearing loss. Additionally, our findings provided new insights into ototoxic drugs, demonstrating that SGK1 and its downstream pathways may be potential therapeutic targets for hearing research at the molecular level.


Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat.

  • Chunhao Dong‎ et al.
  • Nature communications‎
  • 2023‎

Wheat (Triticum aestivum L.) is a major staple food for more than one-third of the world's population. Tiller number is an important agronomic trait in wheat, but only few related genes have been cloned. Here, we isolate a wheat mutant, tiller number1 (tn1), with much fewer tillers. We clone the TN1 gene via map-based cloning: TN1 encodes an ankyrin repeat protein with a transmembrane domain (ANK-TM). We show that a single amino acid substitution in the third conserved ankyrin repeat domain causes the decreased tiller number of tn1 mutant plants. Resequencing and haplotype analysis indicate that TN1 is conserved in wheat landraces and modern cultivars. Further, we reveal that the expression level of the abscisic acid (ABA) biosynthetic gene TaNCED3 and ABA content are significantly increased in the shoot base and tiller bud of the tn1 mutants; TN1 but not tn1 could inhibit the binding of TaPYL to TaPP2C via direct interaction with TaPYL. Taken together, we clone a key wheat tiller number regulatory gene TN1, which promotes tiller bud outgrowth probably through inhibiting ABA biosynthesis and signaling.


CsMLO8/11 are required for full susceptibility of cucumber stem to powdery mildew and interact with CsCRK2 and CsRbohD.

  • Shaoyun Dong‎ et al.
  • Horticulture research‎
  • 2024‎

Powdery mildew (PM) is one of the most destructive diseases that threaten cucumber production globally. Efficient breeding of novel PM-resistant cultivars will require a robust understanding of the molecular mechanisms of cucumber resistance against PM. Using a genome-wide association study, we detected a locus significantly correlated with PM resistance in cucumber stem, pm-s5.1. A 1449-bp insertion in the CsMLO8 coding region at the pm-s5.1 locus resulted in enhanced stem PM resistance. Knockout mutants of CsMLO8 and CsMLO11 generated by CRISPR/Cas9 both showed improved PM resistance in the stem, hypocotyl, and leaves, and the double mutant mlo8mlo11 displayed even stronger resistance. We found that reactive oxygen species (ROS) accumulation was higher in the stem of these mutants. Protein interaction assays suggested that CsMLO8 and CsMLO11 could physically interact with CsRbohD and CsCRK2, respectively. Further, we showed that CsMLO8 and CsCRK2 competitively interact with the C-terminus of CsRbohD to affect CsCRK2-CsRbohD module-mediated ROS production during PM defense. These findings provide new insights into the understanding of CsMLO proteins during PM defense responses.


Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores.

  • Liuhua Yan‎ et al.
  • PLoS genetics‎
  • 2013‎

In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and pathogens.


The Blue-Light Receptor CRY1 Interacts with BZR1 and BIN2 to Modulate the Phosphorylation and Nuclear Function of BZR1 in Repressing BR Signaling in Arabidopsis.

  • Guanhua He‎ et al.
  • Molecular plant‎
  • 2019‎

The blue-light receptor cryptochrome 1 (CRY1) primarily mediates blue-light inhibition of hypocotyl elongation in Arabidopsis. However, the underlying mechanisms remain largely elusive. We report here that CRY1 inhibits hypocotyl elongation by repressing brassinosteroid (BR) signaling. A genetic interaction assay reveals the negative regulatory effect of CRY1 on the function of BZR1, a core transcription factor in the BR signaling pathway. We demonstrated that CRY1 interacts with the DNA-binding domain of BZR1 to interfere with the DNA-binding ability of BZR1, and represses its transcriptional activity. Furthermore, we found that CRY1 promotes the phosphorylation of BZR1 and inhibits the nuclear accumulation of BZR1. Interestingly, we discovered that CRY1 interacts with the GSK3-like kinase BIN2 and enhances the interaction of BIN2 and BZR1 in a light-dependent manner. Our findings revealed that CRY1 negatively regulates the function of BZR1 through at least two mechanisms: interfering with the DNA-binding ability of BZR1 and promoting the phosphorylation of BZR1. Therefore, we uncover a novel CRY1-BIN2-BZR1 regulatory module that mediates crosstalk between blue light and BR signaling to coordinate plant growth in Arabidopsis.


Puerarin alleviates the ototoxicity of gentamicin by inhibiting the mitochondria‑dependent apoptosis pathway.

  • Ping Niu‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Gentamicin (GM) is a commonly used antibiotic, and ototoxicity is one of its side effects. Puerarin (PU) is an isoflavone in kudzu roots that exerts a number of pharmacological effects, including antioxidative and free radical scavenging effects. The present study investigated whether PU could protect against GM‑induced ototoxicity in C57BL/6J mice and House Ear Institute‑Organ of Corti 1 (HEI‑OC1) cells. C57BL/6J mice and HEI‑OC1 cells were used to establish models of GM‑induced ototoxicity in this study. Auditory brainstem responses were measured to assess hearing thresholds, and microscopy was used to observe the morphology of cochlear hair cells after fluorescent staining. Cell viability was examined with Cell Counting Kit‑8 assays. To evaluate cell apoptosis and reactive oxygen species (ROS) production, TUNEL assays, reverse transcription‑quantitative PCR, DCFH‑DA staining, JC‑1 staining and western blotting were performed. PU protected against GM‑induced hearing damage in C57BL/6J mice. PU ameliorated the morphological changes of mouse cochlear hair cells and reduced the apoptosis rate of HEI‑OC1 cells after GM‑mediated damage. GM‑induced ototoxicity may be closely related to the upregulation of p53 expression and the activation of endogenous mitochondrial apoptosis pathways, and PU could protect cochlear hair cells from GM‑mediated damage by reducing the production of ROS and inhibiting the mitochondria‑dependent apoptosis pathway.


The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress gibberellin signaling and plant growth.

  • Baiqiang Yan‎ et al.
  • Plant communications‎
  • 2021‎

Improvements in plant architecture, such as reduced plant height under high-density planting, are important for agricultural production. Light and gibberellin (GA) are essential external and internal cues that affect plant architecture. In this study, we characterize the direct interaction of distinct receptors that link light and GA signaling in Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum L.). We show that the light receptor CRY1 represses GA signaling through interaction with all five DELLA proteins and promotion of RGA protein accumulation in Arabidopsis. Genetic analysis shows that CRY1-mediated growth repression is achieved by means of the DELLA proteins. Interestingly, we find that CRY1 also directly interacts with the GA receptor GID1 to competitively inhibit the GID1-GAI interaction. We also show that overexpression of TaCRY1a reduces plant height and coleoptile growth in wheat and that TaCRY1a interacts with both TaGID1 and Rht1 to competitively attenuate the TaGID1-Rht1 interaction. Based on these findings, we propose that the photoreceptor CRY1 competitively inhibits the GID1-DELLA interaction, thereby stabilizing DELLA proteins and enhancing their repression of plant growth.


Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products.

  • Haihong Bao‎ et al.
  • Nature communications‎
  • 2021‎

Electrochemical carbon monoxide reduction is a promising strategy for the production of value-added multicarbon compounds, albeit yielding diverse products with low selectivities and Faradaic efficiencies. Here, copper single atoms anchored to Ti3C2Tx MXene nanosheets are firstly demonstrated as effective and robust catalysts for electrochemical carbon monoxide reduction, achieving an ultrahigh selectivity of 98% for the formation of multicarbon products. Particularly, it exhibits a high Faradaic efficiency of 71% towards ethylene at -0.7 V versus the reversible hydrogen electrode, superior to the previously reported copper-based catalysts. Besides, it shows a stable activity during the 68-h electrolysis. Theoretical simulations reveal that atomically dispersed Cu-O3 sites favor the C-C coupling of carbon monoxide molecules to generate the key *CO-CHO species, and then induce the decreased free energy barrier of the potential-determining step, thus accounting for the high activity and selectivity of copper single atoms for carbon monoxide reduction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: