Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Cathelicidin-BF, a snake cathelicidin-derived antimicrobial peptide, could be an excellent therapeutic agent for acne vulgaris.

  • Yipeng Wang‎ et al.
  • PloS one‎
  • 2011‎

Cathelicidins are a family of antimicrobial peptides acting as multifunctional effector molecules in innate immunity. Cathelicidin-BF has been purified from the snake venoms of Bungarus fasciatus and it is the first identified cathelicidin antimicrobial peptide in reptiles. In this study, cathelicidin-BF was found exerting strong antibacterial activities against Propionibacterium acnes. Its minimal inhibitory concentration against two strains of P. acnes was 4.7 µg/ml. Cathelicidin-BF also effectively killed other microorganisms including Staphylococcus epidermidis, which was possible pathogen for acne vulgaris. Cathelicidin-BF significantly inhibited pro-inflammatory factors secretion in human monocytic cells and P. acnes-induced O2.- production of human HaCaT keratinocyte cells. Observed by scanning electron microscopy, the surfaces of the treated pathogens underwent obvious morphological changes compared with the untreated controls, suggesting that this antimicrobial peptide exerts its action by disrupting membranes of microorganisms. The efficacy of cathelicidin-BF gel topical administering was evaluated in experimental mice skin colonization model. In vivo anti-inflammatory effects of cathelicidin-BF were confirmed by relieving P. acnes-induced mice ear swelling and granulomatous inflammation. The anti-inflammatory effects combined with potent antimicrobial activities and O2.- production inhibition activities of cathelicidin-BF indicate its potential as a novel therapeutic option for acne vulgaris.


Functional and Structural Investigation of Chalcone Synthases Based on Integrated Metabolomics and Transcriptome Analysis on Flavonoids and Anthocyanins Biosynthesis of the Fern Cyclosorus parasiticus.

  • Meng Niu‎ et al.
  • Frontiers in plant science‎
  • 2021‎

The biosynthesis of flavonoids and anthocyanidins has been exclusively investigated in angiosperms but largely unknown in ferns. This study integrated metabolomics and transcriptome to analyze the fronds from different development stages (S1 without spores and S2 with brown spores) of Cyclosorus parasiticus. About 221 flavonoid and anthocyanin metabolites were identified between S1 and S2. Transcriptome analysis revealed several genes encoding the key enzymes involved in the biosynthesis of flavonoids, and anthocyanins were upregulated in S2, which were validated by qRT-PCR. Functional characterization of two chalcone synthases (CpCHS1 and CpCHS2) indicated that CpCHS1 can catalyze the formation of pinocembrin, naringenin, and eriodictyol, respectively; however, CpCHS2 was inactive. The crystallization investigation of CpCHS1 indicated that it has a highly similar conformation and shares a similar general catalytic mechanism to other plants CHSs. And by site-directed mutagenesis, we found seven residues, especially Leu199 and Thr203 that are critical to the catalytic activity for CpCHS1.


Structural and Biochemical Insights Into Two BAHD Acyltransferases (AtSHT and AtSDT) Involved in Phenolamide Biosynthesis.

  • Chengyuan Wang‎ et al.
  • Frontiers in plant science‎
  • 2020‎

Phenolamides represent one of the largest classes of plant-specialized secondary metabolites and function in diverse physiological processes, including defense responses and development. The biosynthesis of phenolamides requires the BAHD-family acyltransferases, which transfer acyl-groups from different acyl-donors specifically to amines, the acyl-group acceptors. However, the mechanisms of substrate specificity and multisite-acylation of the BAHD-family acyltransferases remain poorly understood. In this study, we provide a structural and biochemical analysis of AtSHT and AtSDT, two representative BAHD-family members that catalyze the multisite acylation of spermidine but show different product profiles. By determining the structures of AtSHT and AtSDT and using structure-based mutagenesis, we identified the residues important for substrate recognition in AtSHT and AtSDT and hypothesized that the acyl acceptor spermidine might adopt a free-rotating conformation in AtSHT, which can undergo mono-, di-, or tri-acylation; while the spermidine molecule in AtSDT might adopt a linear conformation, which only allows mono- or di-acylation to take place. In addition, through sequence similarity network (SSN) and structural modeling analysis, we successfully predicted and verified the functions of two uncharacterized Arabidopsis BAHD acyltransferases, OAO95042.1 and NP_190301.2, which use putrescine as the main acyl-acceptor. Our work provides not only an excellent starting point for understanding multisite acylation in BAHD-family enzymes, but also a feasible methodology for predicting possible acyl acceptor specificity of uncharacterized BAHD-family acyltransferases.


Analysis of Mutation Spectra of 28 Pathogenic Genes Associated With Congenital Hypothyroidism in the Chinese Han Population.

  • Miao Huang‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Congenital hypothyroidism (CH) is the most common neonatal endocrine disease; its early detection ensures successful treatment and prevents complications. However, its molecular etiology remains unclear.


Structural basis of intramitochondrial phosphatidic acid transport mediated by Ups1-Mdm35 complex.

  • Fang Yu‎ et al.
  • EMBO reports‎
  • 2015‎

Ups1 forms a complex with Mdm35 and is critical for the transport of phosphatidic acid (PA) from the mitochondrial outer membrane to the inner membrane. We report the crystal structure of the Ups1-Mdm35-PA complex and the functional characterization of Ups1-Mdm35 in PA binding and transfer. Ups1 features a barrel-like structure consisting of an antiparallel β-sheet and three α-helices. Mdm35 adopts a three-helical clamp-like structure to wrap around Ups1 to form a stable complex. The β-sheet and α-helices of Ups1 form a long tunnel-like pocket to accommodate the substrate PA, and a short helix α2 acts as a lid to cover the pocket. The hydrophobic residues lining the pocket and helix α2 are critical for PA binding and transfer. In addition, a hydrophilic patch on the surface of Ups1 near the PA phosphate-binding site also plays an important role in the function of Ups1-Mdm35. Our study reveals the molecular basis of the function of Ups1-Mdm35 and sheds new light on the mechanism of intramitochondrial phospholipid transport by the MSF1/PRELI family proteins.


The Association of Gut Microbiota With Idiopathic Central Precocious Puberty in Girls.

  • Guoqing Dong‎ et al.
  • Frontiers in endocrinology‎
  • 2019‎

Idiopathic central precocious puberty (ICPP) is a relatively common condition in preadolescent girls, and its pathogenesis remains to be uncovered. A variety of studies have highlighted the association of gut microbiota (GM) with endocrine diseases, such as obesity, which is commonly associated with ICPP. However, the relationship between GM and ICPP remains unexplored. Feces samples were collected from 25 girls with ICPP (ICPP group) and 23 healthy girls (Control group). We applied 16S rDNA sequencing to compare the GM between two groups. The ICPP group had higher GM diversity and was enriched for several GM species, including Ruminococcus gnavus, Ruminococcus callidus, Ruminococcus bromii, Roseburia inulinivorans, Coprococcus eutactus, Clostridium leptum, and Clostridium lactatifermentans, which are known to be associated with obesity and are related to the production of short-chain fatty acids. Additionally, 36 candidate GM biomarkers for patients with ICPP screening were identified with high accuracy (AUC = 0.95, 95% CI 0.88 to 1). We observed that the GM of the ICPP group was enriched for the microbial functions of cell motility, signal transduction, and environmental adaptation. Positive correlations were also detected between Fusobacterium and follicle-stimulating hormone, and Gemmiger and luteinizing hormone. This study documents relationships between GM and ICPP, and the implication of these findings remains to be determined.


Dual nature of the adaptive immune system in lampreys.

  • Peng Guo‎ et al.
  • Nature‎
  • 2009‎

Jawless vertebrates use variable lymphocyte receptors (VLR) comprised of leucine-rich-repeat (LRR) segments as counterparts of the immunoglobulin-based receptors that jawed vertebrates use for antigen recognition. Highly diverse VLR genes are somatically assembled by the insertion of variable LRR sequences into incomplete germline VLRA and VLRB genes. Here we show that in sea lampreys (Petromyzon marinus) VLRA and VLRB anticipatory receptors are expressed by separate lymphocyte populations by monoallelic VLRA or VLRB assembly, together with expression of cytosine deaminase 1 (CDA1) or 2 (CDA2), respectively. Distinctive gene expression profiles for VLRA(+) and VLRB(+) lymphocytes resemble those of mammalian T and B cells. Although both the VLRA and the VLRB cells proliferate in response to antigenic stimulation, only the VLRB lymphocytes bind native antigens and differentiate into VLR antibody-secreting cells. Conversely, VLRA lymphocytes respond preferentially to a classical T-cell mitogen and upregulate the expression of the pro-inflammatory cytokine genes interleukin-17 (IL-17) and macrophage migration inhibitory factor (MIF). The finding of T-like and B-like lymphocytes in lampreys offers new insight into the evolution of adaptive immunity.


Molecular Basis for Sesterterpene Diversity Produced by Plant Terpene Synthases.

  • Qingwen Chen‎ et al.
  • Plant communications‎
  • 2020‎

Class I terpene synthase (TPS) generates bioactive terpenoids with diverse backbones. Sesterterpene synthase (sester-TPS, C25), a branch of class I TPSs, was recently identified in Brassicaceae. However, the catalytic mechanisms of sester-TPSs are not fully understood. Here, we first identified three nonclustered functional sester-TPSs (AtTPS06, AtTPS22, and AtTPS29) in Arabidopsis thaliana. AtTPS06 utilizes a type-B cyclization mechanism, whereas most other sester-TPSs produce various sesterterpene backbones via a type-A cyclization mechanism. We then determined the crystal structure of the AtTPS18-FSPP complex to explore the cyclization mechanism of plant sester-TPSs. We used structural comparisons and site-directed mutagenesis to further elucidate the mechanism: (1) mainly due to the outward shift of helix G, plant sester-TPSs have a larger catalytic pocket than do mono-, sesqui-, and di-TPSs to accommodate GFPP; (2) type-A sester-TPSs have more aromatic residues (five or six) in their catalytic pocket than classic TPSs (two or three), which also determines whether the type-A or type-B cyclization mechanism is active; and (3) the other residues responsible for product fidelity are determined by interconversion of AtTPS18 and its close homologs. Altogether, this study improves our understanding of the catalytic mechanism of plant sester-TPS, which ultimately enables the rational engineering of sesterterpenoids for future applications.


Identification of FtfL as a novel target of berberine in intestinal bacteria.

  • Jinci Yan‎ et al.
  • BMC biology‎
  • 2023‎

Berberine (BBR) is a commonly used anti-intestinal inflammation drug, and its anti-cancer activity has been found recently. BBR can intervene and control malignant colorectal cancer (CRC) through intestinal microbes, but the direct molecular target and related mechanism are unclear. This study aimed to identify the target of BBR and dissect related mechanisms against the occurrence and development of CRC from the perspective of intestinal microorganisms.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: