Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 106 papers

De Novo Mutations of CCNK Cause a Syndromic Neurodevelopmental Disorder with Distinctive Facial Dysmorphism.

  • Yanjie Fan‎ et al.
  • American journal of human genetics‎
  • 2018‎

Neurodevelopment is a transcriptionally orchestrated process. Cyclin K, a regulator of transcription encoded by CCNK, is thought to play a critical role in the RNA polymerase II-mediated activities. However, dysfunction of CCNK has not been linked to genetic disorders. In this study, we identified three unrelated individuals harboring de novo heterozygous copy number loss of CCNK in an overlapping 14q32.3 region and one individual harboring a de novo nonsynonymous variant c.331A>G (p.Lys111Glu) in CCNK. These four individuals, though from different ethnic backgrounds, shared a common phenotype of developmental delay and intellectual disability (DD/ID), language defects, and distinctive facial dysmorphism including high hairline, hypertelorism, thin eyebrows, dysmorphic ears, broad nasal bridge and tip, and narrow jaw. Functional assay in zebrafish larvae showed that Ccnk knockdown resulted in defective brain development, small eyes, and curly spinal cord. These defects were partially rescued by wild-type mRNA coding CCNK but not the mRNA with the identified likely pathogenic variant c.331A>G, supporting a causal role of CCNK variants in neurodevelopmental disorders. Taken together, we reported a syndromic neurodevelopmental disorder with DD/ID and facial characteristics caused by CCNK variations, possibly through a mechanism of haploinsufficiency.


Overexpression of UDP-glucose pyrophosphorylase gene could increase cellulose content in Jute (Corchorus capsularis L.).

  • Gaoyang Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

In this study, the full-length cDNA of the UDP-glucose pyrophosphorylase gene was isolated from jute by homologous cloning (primers were designed according to the sequence of UGPase gene of other plants) and modified RACE techniques; the cloned gene was designated CcUGPase. Using bioinformatic analysis, the gene was identified as a member of the UGPase gene family. Real-time PCR analysis revealed differential spatial and temporal expression of the CcUGPase gene, with the highest expression levels at 40 and 120d. PCR and Southern hybridization results indicate that the gene was integrated into the jute genome. Overexpression of CcUGPase gene in jute revealed increased height and cellulose content compared with control lines, although the lignin content remained unchanged. The results indicate that the jute UGPase gene participates in cellulose biosynthesis. These data provide an important basis for the application of the CcUGPase gene in the improvement of jute fiber quality.


ATP1A3 mutations and genotype-phenotype correlation of alternating hemiplegia of childhood in Chinese patients.

  • Xiaoling Yang‎ et al.
  • PloS one‎
  • 2014‎

Alternating hemiplegia of childhood (AHC) is a rare and severe neurological disorder. ATP1A3 was recently identified as the causative gene. Here we report the first genetic study in Chinese AHC cohort. We performed whole-exome sequencing on three trios and three unrelated patients, and screened additional 41 typical cases and 100 controls by PCR-Sanger sequencing. ATP1A3 mutations were detected in 95.7% of typical AHC patients. At least 93.3% were de novo. Four late onset, atypical AHC patients were also mutation positive, suggesting the need for testing ATP1A3 mutations in atypical cases. Totally, 13 novel missense mutations (T370N, G706R, L770R, T771N, T771I, S772R, L802P, D805H, M806K, P808L, I810N, L839P and G893R) were identified in our study. By homology modeling of the mutant protein structures and calculation of an extensive list of molecular features, we identified two statistically significant molecular features, solvent accessibility and distance to metal ion, that distinguished disease-associated mutations from neutral variants. A logistic regression classifier achieved 92.9% accuracy by the average of 100 times of five-fold cross validations. Genotype-phenotype correlation analysis showed that patients with epilepsy were more likely to carry E815K mutation. In summary, ATP1A3 is the major pathogenic gene of AHC in Chinese patients; mutations have distinctive molecular features that discriminate them from neutral variants and are correlated with phenotypes.


Genetic analysis of benign familial epilepsies in the first year of life in a Chinese cohort.

  • Qi Zeng‎ et al.
  • Journal of human genetics‎
  • 2018‎

Benign familial epilepsies that present themselves in the first year of life include benign familial neonatal epilepsy (BFNE), benign familial neonatal-infantile epilepsy (BFNIE) and benign familial infantile epilepsy (BFIE). We used Sanger sequencing and targeted next-generation sequencing to detect gene mutations in a Chinese cohort of patients with these three disorders. A total of 79 families were collected, including 4 BFNE, 7 BFNIE, and 68 BFIE. Genetic testing led to the identification of gene mutations in 60 families (60 out of 79, 75.9%). A total of 42 families had PRRT2 mutations, 9 had KCNQ2 mutations, 8 had SCN2A mutations, and 1 had a GABRA6 mutation. In total three of four BFNE families were detected with KCNQ2 mutations. Mutations were detected in all BFNIE families, including 3 KCNQ2 mutations, 3 SCN2A mutations, and 1 PRRT2 mutation. Gene mutations were identified in 50 out of 68 BFIE families (73.5%), including 41 PRRT2 mutations (41 out of 68, 60.3%), 5 SCN2A mutations, 3 KCNQ2 mutations, and 1 GABRA6 mutation. Our results confirmed that mutations in KCNQ2, SCN2A, and PRRT2 are major genetic causes of benign familial epilepsy in the first year of life in the Chinese population. KCNQ2 is the major gene related to BFNE. PRRT2 is the main gene responsible for BFIE.


GABA A Receptor Coupling Junction and Pore GABRB3 Mutations are Linked to Early-Onset Epileptic Encephalopathy.

  • Ciria C Hernandez‎ et al.
  • Scientific reports‎
  • 2017‎

GABAA receptors are brain inhibitory chloride ion channels. Here we show functional analyses and structural simulations for three de novo missense mutations in the GABAA receptor β3 subunit gene (GABRB3) identified in patients with early-onset epileptic encephalopathy (EOEE) and profound developmental delay. We sought to obtain insights into the molecular mechanisms that might link defects in GABAA receptor biophysics and biogenesis to patients with EOEE. The mutant residues are part of conserved structural domains such as the Cys-loop (L170R) and M2-M3 loop (A305V) that form the GABA binding/channel gating coupling junction and the channel pore (T288N), which are functionally coupled during receptor activation. The mutant coupling junction residues caused rearrangements and formation of new hydrogen bonds in the open state, while the mutant pore residue reshaped the pore cavity. Whereas mutant coupling junction residues uncoupled during activation and caused gain of function, the mutant pore residue favoured low conductance receptors and differential sensitivity to diazepam and loss of function. These data reveal novel molecular mechanisms by which EOEE-linked mutations affect GABAA receptor function.


Genomic mosaicism in paternal sperm and multiple parental tissues in a Dravet syndrome cohort.

  • Xiaoxu Yang‎ et al.
  • Scientific reports‎
  • 2017‎

Genomic mosaicism in parental gametes and peripheral tissues is an important consideration for genetic counseling. We studied a Chinese cohort affected by a severe epileptic disorder, Dravet syndrome (DS). There were 56 fathers who donated semen and 15 parents who donated multiple peripheral tissue samples. We used an ultra-sensitive quantification method, micro-droplet digital PCR (mDDPCR), to detect parental mosaicism of the proband's pathogenic mutation in SCN1A, the causal gene of DS in 112 families. Ten of the 56 paternal sperm samples were found to exhibit mosaicism of the proband's mutations, with mutant allelic fractions (MAFs) ranging from 0.03% to 39.04%. MAFs in the mosaic fathers' sperm were significantly higher than those in their blood (p = 0.00098), even after conditional probability correction (p' = 0.033). In three mosaic fathers, ultra-low fractions of mosaicism (MAF < 1%) were detected in the sperm samples. In 44 of 45 cases, mosaicism was also observed in other parental peripheral tissues. Hierarchical clustering showed that MAFs measured in the paternal sperm, hair follicles and urine samples were clustered closest together. Milder epileptic phenotypes were more likely to be observed in mosaic parents (p = 3.006e-06). Our study provides new insights for genetic counseling.


MosaicHunter: accurate detection of postzygotic single-nucleotide mosaicism through next-generation sequencing of unpaired, trio, and paired samples.

  • August Yue Huang‎ et al.
  • Nucleic acids research‎
  • 2017‎

Genomic mosaicism arising from postzygotic mutations has long been associated with cancer and more recently with non-cancer diseases. It has also been detected in healthy individuals including healthy parents of children affected with genetic disorders, highlighting its critical role in the origin of genetic mutations. However, most existing software for the genome-wide identification of single-nucleotide mosaicisms (SNMs) requires a paired control tissue obtained from the same individual which is often unavailable for non-cancer individuals and sometimes missing in cancer studies. Here, we present MosaicHunter (http://mosaichunter.cbi.pku.edu.cn), a bioinformatics tool that can identify SNMs in whole-genome and whole-exome sequencing data of unpaired samples without matched controls using Bayesian genotypers. We evaluate the accuracy of MosaicHunter on both simulated and real data and demonstrate that it has improved performance compared with other somatic mutation callers. We further demonstrate that incorporating sequencing data of the parents can be an effective approach to significantly improve the accuracy of detecting SNMs in an individual when a matched control sample is unavailable. Finally, MosaicHunter also has a paired mode that can take advantage of matched control samples when available, making it a useful tool for detecting SNMs in both non-cancer and cancer studies.


Assisted Reproductive Technology and Newborn Size in Singletons Resulting from Fresh and Cryopreserved Embryos Transfer.

  • Galit Levi Dunietz‎ et al.
  • PloS one‎
  • 2017‎

The aim of this study was two-fold: to investigate the association of Assisted Reproductive Technology (ART) and small newborn size, using standardized measures; and to examine within strata of fresh and cryopreserved embryos transfer, whether this association is influenced by parental infertility diagnoses. We used a population-based retrospective cohort from Michigan (2000-2009), Florida and Massachusetts (2000-2010). Our sample included 28,946 ART singletons conceived with non-donor oocytes and 4,263,846 non-ART singletons.


Altered Channel Conductance States and Gating of GABAA Receptors by a Pore Mutation Linked to Dravet Syndrome.

  • Ciria C Hernandez‎ et al.
  • eNeuro‎
  • 2017‎

We identified a de novo missense mutation, P302L, in the γ-aminobutyric acid type A (GABAA) receptor γ2 subunit gene GABRG2 in a patient with Dravet syndrome using targeted next-generation sequencing. The mutation was in the cytoplasmic portion of the transmembrane segment M2 of the γ2 subunit that faces the pore lumen. GABAA receptor α1 and β3 subunits were coexpressed with wild-type (wt) γ2L or mutant γ2L(P302L) subunits in HEK 293T cells and cultured mouse cortical neurons. We measured currents using whole-cell and single-channel patch clamp techniques, surface and total expression levels using surface biotinylation and Western blotting, and potential structural perturbations in mutant GABAA receptors using structural modeling. The γ2(P302L) subunit mutation produced an ∼90% reduction of whole-cell current by increasing macroscopic desensitization and reducing GABA potency, which resulted in a profound reduction of GABAA receptor-mediated miniature IPSCs (mIPSCs). The conductance of the receptor channel was reduced to 24% of control conductance by shifting the relative contribution of the conductance states from high- to low-conductance levels with only slight changes in receptor surface expression. Structural modeling of the GABAA receptor in the closed, open, and desensitized states showed that the mutation was positioned to slow activation, enhance desensitization, and shift channels to a low-conductance state by reshaping the hour-glass-like pore cavity during transitions between closed, open, and desensitized states. Our study revealed a novel γ2 subunit missense mutation (P302L) that has a novel pathogenic mechanism to cause defects in the conductance and gating of GABAA receptors, which results in hyperexcitability and contributes to the pathogenesis of the genetic epilepsy Dravet syndrome.


Pilot trial on the efficacy and safety of pantethine in children with pantothenate kinase-associated neurodegeneration: a single-arm, open-label study.

  • Xuting Chang‎ et al.
  • Orphanet journal of rare diseases‎
  • 2020‎

This study aimed to explore the efficacy and safety of pantethine in children with pantothenate kinase-associated neurodegeneration (PKAN).


Heterozygous Disruption of Beclin 1 Alleviates Zinc Oxide Nanoparticles-Induced Disturbance of Cholesterol Biosynthesis in Mouse Liver.

  • Xuemei Liu‎ et al.
  • International journal of nanomedicine‎
  • 2019‎

Liver is regarded as one of the primary target organs for zinc oxide nanoparticles (ZnONPs) toxicity. Since liver represents the leading site for de novo cholesterol biosynthesis in mammals, the injuries of liver could result in the disruption of cholesterol biosynthesis. In this study, we aimed to investigate whether pulmonary ZnONPs exposure induces disturbance of cholesterol biosynthesis in mouse liver.


Natural history and genotype-phenotype correlation of pantothenate kinase-associated neurodegeneration.

  • Xuting Chang‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2020‎

To investigate the natural history and genotype-phenotype correlation of pantothenate kinase-associated neurodegeneration.


De Novo Variants in the DYNC1H1 Gene Associated With Infantile Spasms.

  • Haipo Yang‎ et al.
  • Frontiers in neurology‎
  • 2021‎

Objective: The DYNC1H1 gene is related to a variety of diseases, including spinal muscular atrophy with lower extremity-predominant 1, Charcot-Marie-Tooth disease type 2O, and mental retardation, autosomal dominant13 (MRD13). Some patients with DYNC1H1 variant also had epilepsy. This study aimed to detect DYNC1H1 variants in Chinese patients with infantile spasms (ISs). Methods: We reviewed clinical information, video electroencephalogram (V-EEG), and neuroimaging of a newly identified cohort of five patients with de novo DYNC1H1gene variants. Results: Five patients with four DYNC1H1variants from four families were included. All patients had epileptic spasms (ESs), the median age at seizure onset was 7.5 months (range from 5 months to 2 years 7 months), and the interictal V-EEG results were hypsarrhythmia. Four of five patients had brain magnetic resonance imaging (MRI) abnormalities. Four de novo DYNC1H1 variants were identified, including two novel variants (p.N1117K, p.M3405L) and two reported variants (p.R1962C, p.F1093S). As for the variant site, two variants are located in the tail domain, one variant is located in the motor domain, and one variant is located in the stalk domain. All patients had tried more than five kinds of antiepileptic drugs. One patient has been controlled well by vigabatrin (VGB) for 4 years, and another patient by VGB and steroids for 1.5 years. The other three patients still had frequent ESs. All patients had severe intellectual disability and development delays. Significance: IS was one of the phenotypes of DYNC1H1 variants. Most patients had non-specific brain MRI abnormality. Two of four DYNC1H1 variants were novel, expanding the variant spectrum. The IS phenotype was related to the variant's domains of DYNC1H1 variant sites. All patients were drug-refractory and showed development delays.


Functional Study of TMEM163 Gene Variants Associated with Hypomyelination Leukodystrophy.

  • Huifang Yan‎ et al.
  • Cells‎
  • 2022‎

Hypomyelinating leukodystrophies (HLDs) are a rare group of heterogeneously genetic disorders characterized by persistent deficit of myelin observed on magnetic resonance imaging (MRI). To identify a new disease-associated gene of HLD, trio-based whole exome sequencing was performed for unexplained patients with HLD. Functional studies were performed to confirm the phenotypic effect of candidate protein variants. Two de novo heterozygous variants, c.227T>G p.(L76R) or c.227T>C p.(L76P) in TMEM163 were identified in two unrelated HLD patients. TMEM163 protein is a zinc efflux transporter localized within the plasma membrane, lysosomes, early endosomes, and other vesicular compartments. It has not been associated with hypomyelination. Functional zinc flux assays in HeLa cells stably-expressing TMEM163 protein variants, L76R and L76P, revealed distinct attenuation or enhancement of zinc efflux, respectively. Experiments using a zebrafish model with knockdown of tmem163a and tmem163b (morphants) showed that loss of tmem163 causes dysplasia of the larvae, locomotor disability and myelin deficit. Expression of human wild type TMEM163 mRNAs in morphants rescues the phenotype, while the TMEM163 L76P and L76R mutants aggravated the condition. Moreover, poor proliferation, elevated apoptosis of oligodendrocytes, and reduced oligodendrocytes and neurons were also observed in zebrafish morphants. Our findings suggest an unappreciated role for TMEM163 protein in myelin development and add TMEM163 to a growing list of genes associated with hypomyelination leukodystrophy.


Status of the Resistance of Aphis gossypii Glover, 1877 (Hemiptera: Aphididae) to Afidopyropen Originating from Microbial Secondary Metabolites in China.

  • Ren Li‎ et al.
  • Toxins‎
  • 2022‎

The resistance of cotton aphids to various forms of commonly used pesticides has seriously threatened the safety of the cotton production. Afidopyropen is a derivative of microbial metabolites with pyropene insecticide, which has been shown to be effective in the management of Aphis gossypii. Several field populations of Aphis gossypii were collected from the major cotton-producing regions of China from 2019 to 2021. The resistance of these populations to afidopyropen was estimated using the leaf-dipping method. The LC50 values of these field populations ranged from 0.005 to 0.591 mg a.i. L-1 in 2019, from 0.174 to 4.963 mg a.i. L-1 in 2020 and from 0.517 to 14.16 mg a.i. L-1 in 2021. The resistance ratios for all A. gossypii populations ranged from 0.03 to 3.97 in 2019, from 1.17 to 33.3 in 2020 and from 3.47 to 95.06 in 2021. The afidopyropen resistance exhibited an increasing trend in the field populations of Cangzhou, Binzhou, Yuncheng, Kuerle, Kuitun, Changji and Shawan from 2019 to 2021. This suggests that the resistance development of the cotton aphid to afidopyropen is inevitable. Therefore, it is necessary to rotate or mix afidopyropen with other insecticides in order to inhibit the development of afidopyropen resistance in field populations.


Human-induced pluripotent stem cell-derived cerebral organoid of leukoencephalopathy with vanishing white matter.

  • Jiong Deng‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2023‎

Leukoencephalopathy with vanishing white matter (VWM) is a rare autosomal recessive leukoencephalopathy resulting from mutations in EIF2B1-5, which encode subunits of eukaryotic translation initiation factor 2B (eIF2B). Studies have found that eIF2B mutation has a certain influence on embryonic brain development. So far, the effect of the eIF2B mutations on the dynamic process of brain development is not fully understood yet.


A review of autobiographical memory studies on patients with schizophrenia spectrum disorders.

  • Yujia Zhang‎ et al.
  • BMC psychiatry‎
  • 2019‎

Patients suffering from schizophrenia spectrum disorders demonstrate various cognitive deficiencies, the most pertinent one being impairment in autobiographical memory. This paper reviews quantitative research investigating deficits in the content, and characteristics, of autobiographical memories in individuals with schizophrenia. It also examines if the method used to activate autobiographical memories influenced the results and which theoretical accounts were proposed to explain the defective recall of autobiographical memories in patients with schizophrenia.


In Vitro Effects of Acitretin on Human Neuronal SH-SY5Y Cells.

  • Aojie Cai‎ et al.
  • Neurochemical research‎
  • 2023‎

Acitretin is an oral drug approved by the Food and Drug Administration that is commonly used to treat psoriasis. In recent years, acitretin has been identified as a candidate drug for the treatment of Alzheimer's disease, but its role in neuronal development is still unclear. In this study, the human neuroblastoma cell line SH-SY5Y was used as a model to study neuronal differentiation. We found that acitretin effectively promoted the differentiation of SH-SY5Y cells into neuronal cells and upregulated the expression of the neuronal marker β-III tubulin and the mature neuronal marker NFH. Differentially expressed genes were identified by RNA sequencing and analyzed by bioinformatics approaches. The results showed that genes associated with neuron development-related pathways, such as SSPO and KCNT1, had significant changes in expression. Analysis showed that PRKCA and CAMK2B may play important roles in the process by which acitretin promotes neurodevelopment. Through whole-cell patch clamping and a microelectrode array assay, we found that acitretin-treated neurons generated electrical spikes similar to those generated by mature neurons. This study provided evidence to support an accessible and safe model of neuron-like cells and verified that acitretin can promote the differentiation of neurons and has the potential to treat brain tumors and neurodevelopmental and neurodegenerative diseases.


Subjective and objective risk perceptions and the willingness to pay for agricultural insurance: evidence from an in-the-field choice experiment in rural China.

  • Hong Fu‎ et al.
  • The Geneva risk and insurance review‎
  • 2022‎

We conducted in-the-field choice experiments in China to investigate farmers' willingness to pay for crop insurance and to determine how objective and subjective beliefs affect Willingness to Pay (WTP). We deploy three variants of the choice experiment using a priming mechanism on objective and subjective beliefs plus a control. We find that the cuing frame matters in that there are differences in WTP within five attributes and across variants. In terms of practical policy, our results suggest that farmers' frame of reference toward objective and subjective risks can affect insurance demand.


Phenotypes of GNAO1 Variants in a Chinese Cohort.

  • Xiaoling Yang‎ et al.
  • Frontiers in neurology‎
  • 2021‎

This study aimed to analyze the genotypes and phenotypes of GNAO1 variants in a Chinese cohort. Seven male and four female patients with GNAO1 variants were enrolled, including siblings of brothers. Ten different GNAO1 variants (nine missense and one splicing site) were identified, among which six were novel. All the variants were confirmed to be de novo in peripheral blood DNA. Eight (73%, 8/11) patients had epilepsy; the seizure onset age ranged from 6 h after birth to 4 months (median age, 2.5 months). Focal seizures were observed in all eight patients, epileptic spasms occurred in six (75%, 6/8), tonic spasm in four (50%, 4/8), tonic seizures in two, atypical absence in one, and generalized tonic-clonic seizures in one. Seven patients had multiple seizure types. Eight (73%, 8/11) patients had movement disorders, seven of them having only dystonia, and one having dystonia with choreoathetosis. Varying degrees of developmental delay (DD) were present in all 11 patients. The phenotypes were diagnosed as early infantile epileptic encephalopathy (EIEE) in two (18%) patients, which were further diagnosed as West syndrome. Movement disorders (MD) with developmental delay were diagnosed in two (18%) brothers. EIEE and MD were overlapped in six (55%) patients, among which two were diagnosed with West syndrome, one with Ohtahara syndrome, and the other three with non-specific EIEE. One (9%) patient was diagnosed as DD alone. The onset age of GNAO1-related disorders was early infancy. The phenotypic spectrum of GNAO1 included EIEE, MD with DD, and DD alone.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: