Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 84 papers

Characterization of genome-wide TFCP2 targets in hepatocellular carcinoma: implication of targets FN1 and TJP1 in metastasis.

  • Xiao Xu‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2015‎

Transcription factor CP2 (TFCP2) is overexpressed in hepatocellular carcinoma(HCC) and correlated with the progression of the disease. Here we report the use of an integrated systems biology approach to identify genome-wide scale map of TFCP2 targets as well as the molecular function and pathways regulated by TFCP2 in HCC.


Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes.

  • Hui Chen‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2013‎

Adiponectin (Ad) plays a crucial role in hepatic lipid metabolism. However, the regulating mechanism of hepatic lipid metabolism by Ad in dairy cows is unclear. Hepatocytes from a newborn female calf were cultured in vitro and treated with different concentrations of Ad and BML-275 (an AMPKα inhibitor). The results showed that Ad significantly increased the expression of two Ad receptors. Furthermore, the phosphorylation and activity of AMPKα, as well as the expression levels and transcriptional activity of peroxisome proliferator activated receptor-α (PPARα) and its target genes involved in lipid oxidation, showed a corresponding trend of upregulation. However, the expression levels and transcriptional activity of sterol regulatory element binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP) decreased in a similar manner. When BML-275 was added, the p-AMPKα level as well as the expression and activity of PPARα and its target genes were significantly decreased. However, the expression levels of SREBP-1c, ChREBP and their target genes showed a trend of upregulation. Furthermore, the triglyceride (TG) content was significantly decreased in the Ad-treated groups. These results indicate that Ad activates the AMPK signaling pathway and mediates lipid metabolism in bovine hepatocytes cultured in vitro by promoting lipid oxidation, suppressing lipid synthesis and reducing hepatic lipid accumulation.


Periodontitis promotes the proliferation and suppresses the differentiation potential of human periodontal ligament stem cells.

  • Wei Zheng‎ et al.
  • International journal of molecular medicine‎
  • 2015‎

The aim of the present study was to investigate the periodontitis-associated changes in the number, proliferation and differentiation potential of human periodontal ligament stem cells (PDLSCs). Cultures of human periodontal ligament cells (PDLCs) were established from healthy donors and donors with periodontitis. The numbers of stem cell were characterized using flow cytometry. PDLSCs were isolated from the PDLCs by immunomagnetic bead selection. Colony‑forming abilities, osteogenic and adipogenic potential, gene expression of cementoblast phenotype, alkaline phosphatase activity and in vivo differentiation capacities were then evaluated. Periodontitis caused an increase in the proliferation of PDLSCs and a decrease in the commitment to the osteoblast lineage. This is reflected by changes in the expression of osteoblast markers. When transplanted into immunocompromised mice, PDLSCs from the healthy donors exhibited the capacity to produce cementum PDL‑like structures, whereas, the inflammatory PDLSCs transplants predominantly formed connective tissues. In conclusion, the data from the present study suggest that periodontitis affects the proliferation and differentiation potential of human PDLSCs in vitro and in vivo.


Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

  • Ying Luo‎ et al.
  • PloS one‎
  • 2015‎

The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.


miRNA profiles in livers with different mass deficits after partial hepatectomy and miR-106b~25 cluster accelerating hepatocyte proliferation in rats.

  • Xiao Xu‎ et al.
  • Scientific reports‎
  • 2016‎

Partial hepatectomy (PH) promotes the reentry of quiescent hepatocytes into cell cycle for regrowth. miRNA profiles in livers with different mass deficits after PH have not been investigated and miRNAs implicated in liver regeneration remain unclear. We generated miRNA profiles from normal and remnant livers at 6, 12, 24, and 36 hours after 1/3 or 2/3PH using microarrays. Compared with normal livers, the proportion of altered miRNAs decreased with time after 1/3PH, but increased after 2/3PH. Most of altered miRNAs between 1/3 and 2/3PH exhibited similar up- or down-regulation, but lower expression magnitude for 1/3PH. Among differentially expressed miRNAs between 2/3PH with robust DNA replication and 1/3PH with a minimal replicative response, we identified miR-101a, miR-92a, miR-25, miR-93 and miR-106b as key regulators of cell cycle. In 2/3PH model, overexpression of miR-106b~25 cluster tended to accelerate liver regeneration, while inhibition of miR-106b~25 cluster markedly repressed regenerative response and delayed recovery of liver function. Mechanistically, RB1 and KAT2B with cell cycle arrest activity were identified as novel targets of miR-106b/93 and miR-25, respectively. Overall, we featured miRNA profiles and dynamics after 1/3 and 2/3PH, and identified miR-106b~25 cluster as being involved in timely cell cycle entry of hepatocytes after PH.


Integrated Bioinformatics Analysis of Hub Genes and Pathways in Anaplastic Thyroid Carcinomas.

  • Xueren Gao‎ et al.
  • International journal of endocrinology‎
  • 2019‎

Anaplastic thyroid carcinoma (ATC) is a very rare malignancy; the pathogenesis of which is still not fully understood. The aim of the present study was to identify hub genes and pathways in ATC by microarray expression profiling. Two independent datasets (GSE27155 and GSE53072) were downloaded from GEO database. The differentially expressed genes (DEGs) between ATC tissues and normal thyroid tissues were screened out by the limma package and then enriched by gene ontology (GO) and KEGG pathway analysis. The hub genes were selected by protein-protein interaction (PPI) analysis. A total of 141 common upregulated and 87 common downregulated genes were screened out. These DEGs were significantly enriched in the phagosome and NF-kappa B signaling pathway. Through PPI analysis, TOP2A, TYMS, CCNB1, RACGAP1, FEN1, PRC1, and UBE2C were selected as hub genes, which were highly expressed in ATC tissues. TCGA data suggested that the expression levels of TOP2A, TYMS, FEN1, and PRC1 genes were also upregulated in other histological subtypes of thyroid carcinoma. High expression of TOP2A, TYMS, FEN1, PRC1, or UBE2C gene significantly decreased disease-free survival of patients with other thyroid carcinomas. In conclusion, the present study identified several hub genes and pathways, which will contribute to elucidating the pathogenesis of ATC and providing therapeutic targets for ATC.


Celastrol Loaded Nanoparticles With ROS-Response and ROS-Inducer for the Treatment of Ovarian Cancer.

  • Weina Niu‎ et al.
  • Frontiers in chemistry‎
  • 2020‎

Ovarian cancer is a gynecological cancer from which it is difficult to be completely cured. It is common to use regimens as an effective treatment for ovarian cancer, but these inevitably bring serious side effects. New treatment strategies and special drugs are needed to improve the prognosis of patients. Celastrol is a natural product, isolated from traditional medicine, that has been proven to be curative for inflammation and cancers. However, the non-targeting and low solubility of celastrol limit its clinical application. We prepared celastrol-loaded nanoparticles for the efficient treatment of ovarian cancer via oxidative stress amplification. In this work, a tumor-targeted, ROS-sensitive nanoparticle was designed, synthesized, and assembled into a drug delivery system that used celastrol. Folic acid (FA) groups on the surface of nanoparticles guide them to actively target the surface of the tumor cell membrane. Thioketal (TK) bonds in nanoparticles can be oxidized and broken into -SH within the ROS level of tumor tissues, which causes the breaking of the PEG hydrophilic shell layer of nanoparticles and promotes the release of celastrol. The released celastrol further stimulated the production of ROS and amplified the intracellular ROS level to promote the apoptosis of tumor cells, thus achieving a therapeutic effect on the celastrol treated ovarian cancer.


Identification of RUNX2 variants associated with cleidocranial dysplasia.

  • Xueren Gao‎ et al.
  • Hereditas‎
  • 2019‎

Cleidocranial dysplasia (CCD) is a rare autosomal dominant disorder mainly characterized by hypoplastic or absent clavicles, delayed closure of the fontanelles, multiple dental abnormalities, and short stature. Runt-related transcription factor 2 (RUNX2) gene variants can cause CCD, but are not identified in all CCD patients.


Identification of microRNAs associated with the survival of patients with gallbladder carcinoma.

  • Jianguo Wang‎ et al.
  • The Journal of international medical research‎
  • 2020‎

This study investigated micro (mi)RNAs associated with the survival of patients with gallbladder carcinoma (GBC).


Effectiveness and Safety of Pyrotinib, and Association of Biomarker With Progression-Free Survival in Patients With HER2-Positive Metastatic Breast Cancer: A Real-World, Multicentre Analysis.

  • Qitong Chen‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Background: Pyrotinib, an irreversible pan-ERBB inhibitor, has shown promising antitumour activity, and acceptable tolerability. This research was conducted to evaluate the actual use and effectiveness of pyrotinib in China, therefore, contributed to solve the problem of real-world data scarcity. Methods: In this retrospective study, 168 patients who received pyrotinib treatment for HER2-positive metastatic breast cancer (MBC) in Hunan Province from June 2018 to August 2019 were included. Progression-free survival (PFS), tumor mutation burden (TMB), and drug-related adverse events (AEs) after pyrotinib administration were analyzed. Results: The median PFS (mPFS) time in the 168 participants was 8.07 months. The mPFS times in patients with pyrotinib in second-line therapy (n = 65) and third-or-higher-line therapy (n = 94) were 8.10 months and 7.60 months, respectively. Patients with brain metastases achieved 8.80 months mPFS time. In patients with pyrotinib in third-or-higher-line therapy, patients who had previously used lapatinib still got efficacy but showed a shorter mPFS time (6.43 months) than patients who had not (8.37 months). TMB was measured in 28 patients, K-M curve (P = 0.0024) and Multivariate Cox analysis (P = 0.0176) showed a significant negative association between TMB and PFS. Diarrhea occurred in 98.2% of participants (in any grade) and 19.6% in grade 3-4 AEs. Conclusion: Pyrotinib is highly beneficial to second-or-higher-line patients or HER2-positive MBC patients with brain metastases. Pyrotinib seems to be a feasible strategy both in combination of chemotherapeutic drugs or as a replacement of lapatinib if diseases progressed. TMB could be a potential predictor for evaluating pyrotinib's effectiveness in HER2-positive MBC.


A Beckwith-Wiedemann syndrome case with de novo 24 Mb duplication of chromosome 11p15.5p14.3.

  • Huling Jiang‎ et al.
  • Molecular cytogenetics‎
  • 2021‎

Molecular genetic testing for the 11p15-associated imprinting disorder Beckwith-Wiedemann syndrome (BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. An integrated molecular approach to analyze the epigenetic-genetic alterations is required for accurate diagnosis of BWS.


CHOP Regulates Endoplasmic Reticulum Stress-Mediated Hepatoxicity Induced by Monocrotaline.

  • Yazhou Guo‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Monocrotaline (MCT), a pyrrolizidine alkaloid, is the major toxin in Crotalaria, which causes cell apoptosis in humans and animals. It has been reported that the liver is a vulnerable target of MCT. However, the exact molecular mechanism of the interaction between endoplasmic reticulum (ER) stress and liver injury induced by MCT is still unclear. In this study, the cytotoxicity of MCT on primary rat hepatocytes was analyzed by a CCK-8 assay and Annexin V-FITC/PI assay. Protein expression was detected by western blotting and immunofluorescence staining. As a result, MCT significantly decreased the cell viability and mediated the apoptosis of primary rat hepatocytes. Meanwhile, MCT could also induce ER stress in hepatocytes, indicated by the expression of ER stress-related proteins, including GRP78, p-IRE1α, ATF6, p-eIF2α, ATF4, and CHOP. Pretreatment with 4-PBA, an inhibitor of ER stress, or knockdown of CHOP by siRNA could partly enhance cell viability and relieve the apoptosis. Our findings indicate that ER stress is involved in the hepatotoxicity induced by MCT, and CHOP plays an important role in this process.


Systems Approach to Discovery of Therapeutic Targets for Vein Graft Disease: PPARα Pivotally Regulates Metabolism, Activation, and Heterogeneity of Macrophages and Lesion Development.

  • Julius L Decano‎ et al.
  • Circulation‎
  • 2021‎

Vein graft failure remains a common clinical challenge. We applied a systems approach in mouse experiments to discover therapeutic targets for vein graft failure.


A new species, a new combination, and a new record of Crossotarsus Chapuis, 1865 (Coleoptera, Curculionidae, Platypodinae) from China.

  • Shengchang Lai‎ et al.
  • ZooKeys‎
  • 2021‎

This study describes a new species, Crossotarsus beaveri Lai & Wang, sp. nov., designates a new combination, C. brevis (Browne, 1975, comb. nov. from Platypus Herbst, 1793), and notes a new record, C. emorsus Beeson, 1937, from China. Genetic data from four genes indicate that the new species and C. brevis form a clade clustered with other Crossotarsus species. Molecular phylogeny and morphological characters support their taxonomic placement.


Study on the Flow State of Circulating Cooling Water for the Industrial Heat Exchange Tube in the Electromagnetic Anti-Fouling Process.

  • Lei Yan‎ et al.
  • ACS omega‎
  • 2021‎

Comparing with the traditional chemical and physical method, the electromagnetic water treatment technology draws more attention of researchers for its advantages of easy application, small investment, low cost, and being pollution free in recent years. However, due to the less study of the formation process and adhesion of fouling on the surface of heat exchange equipment, the electromagnetic anti-fouling performance cannot be well evaluated. This paper studies the numerical simulation of the flow states of circulating cooling water in heat exchange tubes with a straight shape and U-shaped ones and analyzes the experimental data of fouling resistance on heat transfer surface under the action of 0.5, 0.75, 1, and 1.5 kHz electromagnetic fields. The variations in the velocity field and pressure field at various points in heat exchange tubes declare that the velocity of the circulating cooling water is smaller in the outlet of the pipeline. The change of the circulating cooling water flow state with the pipeline shape causes a certain impact on fluid velocity, and the pressure value at the outlet is larger. It is obtained that the flow velocity in the area with high surface pressure of circulating cooling water is relatively small. The experimental results indicate that the fouling resistance on the surface of the magnetic heat exchange tube is smaller than that of the nonmagnetic one. The anti-fouling efficiency in 0.5, 0.75, 1, and 1.5 kHz magnetic and contrast experiments are 46.8, 84.8, 91.2, and 63.6%, respectively. Better anti-fouling performances are obtained under the action of about 1 kHz electromagnetic frequency. The induction period of fouling on the heat exchange surface is lengthened under electromagnetic fields. All these studies are of significant importance to further understand the formation process and adhesion of fouling on the surface of heat exchange equipment, as well as to better evaluate the electromagnetic anti-fouling performance.


Chromosome-scale Genome Assembly of the Yellow Nutsedge (Cyperus esculentus).

  • Xiaoqing Zhao‎ et al.
  • Genome biology and evolution‎
  • 2023‎

The yellow nutsedge (Cyperus esculentus L. 1753) is an unconventional oil plant with oil-rich tubers, and a potential alternative for traditional oil crops. Here, we reported the first high-quality and chromosome-level genome assembly of the yellow nutsedge generated by combining PacBio HiFi long reads, Novaseq short reads, and Hi-C data. The final genome size is 225.6 Mb with an N50 of 4.3 Mb. More than 222.9 Mb scaffolds were anchored to 54 pseudochromosomes with a BUSCO score of 96.0%. We identified 76.5 Mb (33.9%) repetitive sequences across the genome. A total of 23,613 protein-coding genes were predicted in this genome, of which 22,847 (96.8%) were functionally annotated. A whole-genome duplication event was found after the divergence of Carex littledalei and Rhynchospora breviuscula, indicating the rich genetic resources of this species for adaptive evolution. Several significantly enriched GO terms were related to invasiveness of the yellow nutsedge, which may explain its plastic adaptability. In addition, several enriched Kyoto Encyclopedia of Genes and Genomes pathways and expanded gene families were closely related with substances in tubers, partially explaining the genomic basis of characteristics of this oil-rich tuber.


Deep learning for prediction of hepatocellular carcinoma recurrence after resection or liver transplantation: a discovery and validation study.

  • Zhikun Liu‎ et al.
  • Hepatology international‎
  • 2022‎

There is a growing need for new improved classifiers of prognosis in hepatocellular carcinoma (HCC) patients to stratify them effectively.


Aggregation caused quenching to aggregation induced emission transformation: a precise tuning based on BN-doped polycyclic aromatic hydrocarbons toward subcellular organelle specific imaging.

  • Huanan Huang‎ et al.
  • Chemical science‎
  • 2022‎

Polycyclic aromatic hydrocarbons (PAHs) with boron-nitrogen (BN) moieties have attracted tremendous interest due to their intriguing electronic and optoelectronic properties. However, most of the BN-fused π-systems reported to date are difficult to modify and exhibit traditional aggregation-caused quenching (ACQ) characteristics. This phenomenon greatly limits their scope of application. Thus, continuing efforts to seek novel, structurally distinct and functionally diverse structures are highly desirable. Herein, we proposed a one-stone-two-birds strategy including simultaneous exploration of reactivity and tuning of the optical and electronic properties for BN-containing π-skeletons through flexible regioselective functionalization engineering. In this way, three novel functionalized BN luminogens (DPA-BN-BFT, MeO-DPA-BN-BFT and DMA-DPA-BN-BFT) with similar structures were obtained. Intriguingly, DPA-BN-BFT, MeO-DPA-BN-BFT and DMA-DPA-BN-BFT exhibit completely different emission behaviors. Fluorogens DPA-BN-BFT and MeO-DPA-BN-BFT exhibit a typical ACQ effect; in sharp contrast, DMA-DPA-BN-BFT possesses a prominent aggregation induced emission (AIE) effect. To the best of our knowledge, this is the first report to integrate ACQ and AIE properties into one BN aromatic backbone with subtle modified structures. Comprehensive analysis of the crystal structure and theoretical calculations reveal that relatively large twisting angles, multiple intermolecular interactions and tight crystal packing modes endow DMA-DPA-BN-BFT with strong AIE behavior. More importantly, cell imaging demonstrated that luminescent materials DPA-BN-BFT and DMA-DPA-BN-BFT can highly selectively and sensitively detect lipid droplets (LDs) in living MCF-7 cells. Overall, this work provides a new viewpoint of the rational design and synthesis of advanced BN-polycyclic aromatics with AIE features and triggers the discovery of new functions and properties of azaborine chemistry.


Exploring the Protective Effects and Mechanism of Huaji Jianpi Decoction against Nonalcoholic Fatty Liver Disease by Network Pharmacology and Experimental Validation.

  • Hongkun Xue‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2022‎

This paper was designed to predict the mechanisms of the active components of Huaji Jianpi Decoction (HJJPD) against nonalcoholic fatty liver disease (NAFLD) based on network pharmacology-combined animal experiments. The candidate compounds of HJJPD and its relative targets were obtained from TCMSP and PharmMapper web server, and the intersection genes for NAFLD were discerned using OMIM, GeneCards, and DisGeNET. Then, the target protein-protein interaction (PPI) and component-target-pathway networks were constructed. Moreover, gene function annotation (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to study the potential signaling pathways associated with HJJPD's effect on NAFLD. Molecular docking simulation was preformed to validate the binding affinity between potential core components and key targets. Eventually, the candidate targets, the possible pathway, and the mechanism of HJJPD were predicted by the network pharmacology-based strategy, followed by experimental validation in the NAFLD mice model treated with HJJPD. A total of 55 candidate compounds and 36 corresponding genes were identified from HJJPD that are associated with activity against NAFLD, and then the network of them was constructed. Inflammatory response and lipid metabolism-related signaling pathways were identified as the critical signaling pathways mediating the therapeutic effect of the active bioactive ingredients on NAFLD. Compared with the model group, the liver wet weight, liver/body ratio, the levels of total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and high-density lipoprotein (HDL) in serum in the HJJPD low-dose (17.52 g/kg·d), medium-dose (35.04 g/kg·d), and high-dose (70.07 g/kg·d) groups significantly decreased (P < 0.05). Light microscope observation shows that HJJPD could control the degree of lipid denaturation of the mouse liver tissue to a great extent. RT-qPCR results show that the mRNA expression levels of peroxisome proliferative activated receptor gamma (PPARG), tumor necrosis factor-α (TNF-α), antiserine/threonine protein kinase 1 (AKT1), and prostaglandin-endoperoxide synthase (PTGS2) in the liver tissues of the three HJJPD groups (17.52 g/kg·d, 35.04 g/kg·d, and 70.07 g/kg·d) were significantly lower than those in the model group (P < 0.05). HJJPD can exert its effect by inhibiting hepatic steatosis and related mRNA expression and decreasing the levels of other liver-related indexes. This study suggested that HJJPD exerted its effect on NAFLD by modulating multitargets with multicompounds through multipathways. It also demonstrated that the network pharmacology-based approach might provide insights for understanding the interrelationship between complex diseases and interventions of HJJPD.


Construction and validation of 3-genes hypoxia-related prognostic signature to predict the prognosis and therapeutic response of hepatocellular carcinoma patients.

  • Yunxun Liu‎ et al.
  • PloS one‎
  • 2023‎

Previous studies have shown that the hypoxia microenvironment significantly impacted tumor progression. However, the clinical prognostic value of hypoxia-related risk signatures and their effects on the tumor microenvironment (TME) in hepatocellular carcinoma (HCC) remains hazy. This study aimed to conduct novel hypoxia-related prognostic signatures and improve HCC prognosis and treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: