Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

Scalp acupuncture for acute ischemic stroke: a meta-analysis of randomized controlled trials.

  • Yan Wang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2012‎

Scalp acupuncture (SA) is a commonly used therapeutic approach for stroke throughout China and elsewhere in the world. The objective of this study was to assess clinical efficacy and safety of SA for acute ischemic stroke. A systematical literature search of 6 databases was conducted to identify randomized controlled trials (RCTs) of SA for acute ischemic stroke compared with western conventional medicines (WCMs). All statistical analyses were performed by the Rev Man Version 5.0. Eight studies with 538 participants were included in the studies. The studies were deemed to have an unclear risk of bias based on the Cochrane Back Review Group. Compared with the WCM, 6 RCTs showed significant effects of SA for improving neurological deficit scores (P < 0.01); 4 RCTs showed significant effects of SA for favoring the clinical effective rate (P < 0.01) However, the adverse events have not been documented. In conclusion, SA appears to be able to improve neurological deficit score and the clinical effective rate when compared with WCM, though the beneficial effect from SA is possibly overvalued because of generally low methodology of the included trials. No evidence is available for adverse effects. Rigorous well-designed clinical trials are needed.


Bushen-Yizhi Formula Alleviates Neuroinflammation via Inhibiting NLRP3 Inflammasome Activation in a Mouse Model of Parkinson's Disease.

  • Yousheng Mo‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

Parkinson's disease (PD), the second most common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Although the molecular mechanisms underlying dopaminergic neuronal degeneration in PD remain unclear, neuroinflammation is considered as the vital mediator in the pathogenesis and progression of PD. Bushen-Yizhi Formula (BSYZ), a traditional Chinese medicine, has been demonstrated to exert antineuroinflammation in our previous studies. However, it remains unclear whether BSYZ is effective for PD. Here, we sought to assess the neuroprotective effects and explore the underlying mechanisms of BSYZ in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine- (MPTP-) induced mouse model of PD. Our results indicate that BSYZ significantly alleviates the motor impairments and dopaminergic neuron degeneration of MPTP-treated mice. Furthermore, BSYZ remarkably attenuates microglia activation, inhibits NLPR3 activation, and decreases the levels of inflammatory cytokines in MPTP-induced mouse brain. Also, BSYZ inhibits NLRP3 activation and interleukin-1β production of the 1-methyl-4-phenyl-pyridinium (MPP+) stimulated BV-2 microglia cells. Taken together, our results indicate that BSYZ alleviates MPTP-induced neuroinflammation probably via inhibiting NLRP3 inflammasome activation in microglia. Collectively, BSYZ may be a potential therapeutic agent for PD and the related neurodegeneration diseases.


Peroxynitrite contributes to arsenic-induced PARP-1 inhibition through ROS/RNS generation.

  • Xixi Zhou‎ et al.
  • Toxicology and applied pharmacology‎
  • 2019‎

Arsenic, in the trivalent form (AsIII), is a human co-carcinogen reported to enhance mutagenesis effects of other carcinogens such as UV radiation by inhibiting DNA repair. The zinc finger DNA repair protein Poly (ADP-ribose) polymerase 1 (PARP-1) is a sensitive target of AsIII and both reactive oxygen and nitrogen species (ROS/RNS) generated by AsIII contribute to PARP-1 inhibition. However, the mechanisms of ROS/RNS-mediated PARP inhibition and how AsIII-generated ROS/RNS may be interconnected are still unclear. In this study, we found AsIII exposure of normal human keratinocyte (HEKn) cells generated peroxynitrite through superoxide and nitric oxide production in an AsIII concentration dependent manner. Peroxynitrite inhibited PARP-1 activity and caused zinc loss from PARP-1 protein while scavenging peroxynitrite was protective of the impacts on PARP-1. We identified peroxynitrite was responsible for S-nitrosation on cysteine residues resulting in PARP-1 zinc finger conformational changes. Taken together, the evidence indicates AsIII generates peroxynitrite through superoxide and nitric oxide production, induces S-nitrosation on PARP-1, leading to zinc loss and activity inhibition of PARP-1, thus enhancing DNA damage caused by UV radiation. These findings highlight a role for peroxynitrite as a key molecule of ROS/RNS mediated DNA repair inhibition by AsIII which should inform the development of prevention and intervention strategies against AsIII co-carcinogenesis.


Acteoside ameliorates experimental autoimmune encephalomyelitis through inhibiting peroxynitrite-mediated mitophagy activation.

  • Wenting Li‎ et al.
  • Free radical biology & medicine‎
  • 2020‎

Multiple sclerosis (MS) is an inflammatory disease in central nervous system (CNS) with limited therapeutic drugs. In the present study, we explored the anti-inflammatory/neuroprotective properties of Acteoside (AC), an active compound from medicinal herb Radix Rehmanniae (RR), and neuroprotective effects of AC on MS pathology by using an experimental autoimmune encephalomyelitis (EAE) model. We tested the hypothesis that AC could alleviate EAE pathogenesis through inhibiting inflammation and ONOO--mediated mitophagy activation in vivo and in vitro. The results showed that AC treatment effectively ameliorated neurological deficit score and postponed disease onset in the EAE mice. AC treatment inhibited inflammation/demyelination, alleviated peripheral activation and CNS infiltration of encephalitogenic CD4+ T cells and CD11b+ activated microglia/macrophages in the spinal cord of EAE mice. Meanwhile, AC treatment reduced ONOO- production, down-regulated the expression of iNOS and NADPH oxidases, and inhibited neuronal apoptotic cell death and mitochondrial damage in the spinal cords of the EAE mice. Furthermore, AC treatment decreased the ratio of LC3-II to LC3-I in mitochondrial fraction, and inhibited the translocation of Drp1 to the mitochondria. In vitro studies further proved that AC possessed strong ONOO- scavenging capability and protected the neuronal cells from nitrative cytotoxicity via suppressing ONOO--mediated excessive mitophagy. Taken together, Acteoside could be a potential therapeutic agent for multiple sclerosis treatment. The suppression of ONOO--induced excessive mitophagy activation could be one of the critical mechanisms contributing to its anti-inflammatory and anti-demyelinating properties.


Realgar and cinnabar are essential components contributing to neuroprotection of Angong Niuhuang Wan with no hepatorenal toxicity in transient ischemic brain injury.

  • Bun Tsoi‎ et al.
  • Toxicology and applied pharmacology‎
  • 2019‎

Realgar and cinnabar are commonly used mineral medicine containing arsenic and mercury in Traditional Chinese Medicine (TCM). Angong Niuhuang Wan (AGNHW) is a representative realgar- and cinnabar-containing TCM formula for treating acute ischemic stroke, but its toxicology and neuropharmacological effects are not well addressed. In this study, we compared the neuropharmacological effects of AGNHW and modified AGNHW in an experimental ischemic stroke rat model. Male SD rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus 22 h of reperfusion. Although oral administration of AGNHW for 7 days in the rats increased arsenic level in the blood and liver tissue, there were no significant changes in the arsenic level in kidney, mercury level in the blood, liver and kidney as well as hepatic and renal functions in MCAO rats. AGNHW revealed neuroprotective properties by reducing infarction volume, preserving blood-brain barrier integrity and improving neurological functions against cerebral ischemia-reperfusion injury. Interestingly, removing realgar and/or cinnabar from AGNHW abolished the neuroprotective effects. Meanwhile, AGNHW could scavenge peroxynitrite, down-regulate the expression of p47phox, 3-NT and MMP-9 and up-regulate the expression of ZO-1 and claudin-5 in the ischemic brains, which were abolished by removing realgar and/or cinnabar from AGNHW. Notably, realgar or cinnabar had no neuroprotection when used alone. Taken together, oral administration of AGNHW for one week should be safe for treating ischemic stroke with neuroprotective effects. Realgar and cinnabar are necessary elements with synergetic actions with other herbal materials for the neuroprotective effects of AGNHW against cerebral ischemia-reperfusion injury.


Astragali Radix Isoflavones Synergistically Alleviate Cerebral Ischemia and Reperfusion Injury Via Activating Estrogen Receptor-PI3K-Akt Signaling Pathway.

  • Yong Gu‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Isoflavones are major neuroprotective components of a medicinal herb Astragali Radix, against cerebral ischemia-reperfusion injury but the mechanisms of neuroprotection remain unclear. Calycosin and formononetin are two major AR isoflavones while daidzein is the metabolite of formononetin after absorption. Herein, we aim to investigate the synergistic neuroprotective effects of those isoflavones of Astragali Radix against cerebral ischemia-reperfusion injury. Calycosin, formononetin and daidzein were organized with different combinations whose effects observed in both in vitro and in vivo experimental models. In the in vitro study, primary cultured neurons were subjected to oxygen-glucose deprivation plus reoxygenation (OGD/RO) or l-glutamate treatment. In the in vivo study, rats were subjected to middle cerebral artery occlusion to induce cerebral ischemia and reperfusion. All three isoflavones pre-treatment alone decreased brain infarct volume and improved neurological deficits in rats, and dose-dependently attenuated neural death induced by l-glutamate treatment and OGD/RO in cultured neurons. Interestingly, the combined formulas of those isoflavones revealed synergistically activated estrogen receptor (estrogen receptors)-PI3K-Akt signaling pathway. Using ER antagonist and phosphatidylinositol 3-kinase (PI3K) inhibitor blocked the neuroprotective effects of those isoflavones. In conclusion, isoflavones could synergistically alleviate cerebral ischemia-reperfusion injury via activating ER-PI3K-Akt pathway.


Glycyrrhetinic acid induces oxidative/nitrative stress and drives ferroptosis through activating NADPH oxidases and iNOS, and depriving glutathione in triple-negative breast cancer cells.

  • Yi Wen‎ et al.
  • Free radical biology & medicine‎
  • 2021‎

Reactive oxygen species (ROS)/reactive nitrogen species (RNS)-mediated ferroptosis becomes a novel effective target for anti-cancer treatment. In the present study, we tested the hypothesis that 18-β-glycyrrhetinic acid (GA), an active compound from medicinal herbal Licorice, could induce the production of ROS/RNS, increase lipid peroxidation and trigger ferroptosis in MDA-MB-231 triple negative breast cancer cells. To confirm the GA's anti-cancer effects, we detected cell viability, apoptosis and ferroptosis in the MDA-MB-231 cells. To explore the effects of GA on inducing ferroptosis, we measured mitochrondrial morphology, ROS/RNS production, lipid peroxidation, ferrous ion, glutathione (GSH), System Xc-, GPX4, glutathione peroxidases (GPX), NADPH oxidase and iNOS in the MDA-MB-231 cells. The major discoveries are included as below: (1) GA treatment selectively decreased cell viability and induced ferroptosis companied with the increased lipid peroxidation and ferrous ion in the MDA-MB-231 triple negative breast cancer cells. Iron chelator deferoxamine mesylate (DFO) and ferroptosis inhibitor Ferrostatin-1 abolished the effects of GA. (2) GA treatment up-regulated the expression and activity of NADPH oxidase and iNOS, and increased ROS/RNS productions (O2•-, •OH, NO and ONOO-) in the MDA-MB-231 cells; (3) GA down-regulated the expression of SLC7A11 of System Xc-, decreased glutathione (GSH) level and inhibited GPX activity. Taken together, GA could promote the productions of ROS and RNS via activating NADPH oxidases and iNOS, and decreasing GSH and GPX activity, subsequently aggravating lipid peroxidation and triggering ferroptosis in triple-negative breast cancer cells.


Neuroprotective effect of cajaninstilbene acid against cerebral ischemia and reperfusion damages by activating AMPK/Nrf2 pathway.

  • Hui Xu‎ et al.
  • Journal of advanced research‎
  • 2021‎

Ischemic stroke is one of the leading causes of death worldwide. Recently, neuroprotection is regarded as an important preventative and therapeutic strategy for ischemic stroke. Cajaninstilbene acid (CSA), a unique stilbenoid with a styryl group, is a potential neuroprotective agent.


Ginkgo biloba extract (EGb761) inhibits mitochondria-dependent caspase pathway and prevents apoptosis in hypoxia-reoxygenated cardiomyocytes.

  • Jiangang Shen‎ et al.
  • Chinese medicine‎
  • 2011‎

EGb761 is a standard extract from the leaves of Ginkgo biloba (Yinxing) containing ginkgo-flavone glycosides and terpenoid. The flavonoid components of EGb761 scavenge free radicals and protect myocardia from ischemia-reperfusion injury. The present study aims to determine the effects of the active compounds of EGb761 on mitochondria-dependent caspase pathway.


A novel role of HuR in -Epigallocatechin-3-gallate (EGCG) induces tumour cells apoptosis.

  • Wenxuan Jian‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

No abstract available


Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis.

  • Fu Peng‎ et al.
  • Scientific reports‎
  • 2017‎

Breast cancer is one of the most frightful causes of death among females worldwide. Accumulating evidence attached the importance of microRNAs negative regulation to tumorigenesis in breast cancer, suggesting novel cancer therapies targeting microRNAs modulation. Recent studies demonstrated that isoliquiritigenin could inhibit breast cancer cells proliferation and migration, but the underlying mechanism is still limited. In this study, the anti-cancer effects as well as the detailed mechanisms of isoliquiritigenin were explored. The results proved that isoliquiritigenin could negatively regulate breast cancer growth through the induction of apoptosis. We also verified the anti-cancer effect of isoliquiritigenin on migration and invasion, and identified highly expressed miR-374a as one of the main microRNAs down-regulated by isoliquiritigenin treatment in breast cancer. Further study displayed that isoliquiritigenin increased PTEN expression through the decrease of miR-374a expression to inhibit the aberrant Akt signaling. Our findings suggest isoliquiritigenin as a novel anti-cancer candidate significantly regulating miR-374a/PTEN/Akt axis in microRNA-based breast cancer therapies.


Clinical efficacy and safety of buyang huanwu decoction for acute ischemic stroke: a systematic review and meta-analysis of 19 randomized controlled trials.

  • Chi-Zi Hao‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2012‎

Buyang Huanwu Decoction (BHD) is a well-known traditional Chinese herbal prescription for treating stroke-induced disability. The objective of this study was to evaluate the efficacy and safety of BHD for acute ischemic stroke. A systematic literature search was performed in 6 databases until February 2012. Randomized controlled clinical trials (RCTs) that evaluate efficacy and safety of BHD for acute ischemic stroke were included. Nineteen RCTs with 1580 individuals were identified. The studies were generally of low methodological quality. Only one of the trial included death or dependency as a primary outcome measure. Only 4 trials reported adverse events. Meta-analysis showed the clinical effective rate of neurological deficit improvement favoring BHD when compared with western conventional medicines (WCM), P < 0.001. There is significant difference in the neurologic deficit score between the BHD treatment group and the WCM control group, P < 0.001. In Conclusion, BHD appears to improve neurological deficit and seems generally safe in patients with acute ischemic stroke. However, the current evidence is insufficient to support a routine use of BHD for acute ischemic stroke due to the poor methodological quality and lack of adequate safety data of the included studies. Further rigorously designed trials are required.


Momordica charantia polysaccharides modulate the differentiation of neural stem cells via SIRT1/Β-catenin axis in cerebral ischemia/reperfusion.

  • Zhaoli Hu‎ et al.
  • Stem cell research & therapy‎
  • 2020‎

Stroke is the leading cause of long-term motor disability and cognitive impairment. Recently, neurogenesis has become an attractive strategy for the chronic recovery of stroke. It is important to understand the molecular mechanism that promotes neural stem cell (NSC) neurogenesis for future NSC-based therapies. Our previous study showed that Momordica charantia polysaccharides (MCPs) exerted neuroprotective effects on stroke via their anti-oxidant and anti-inflammation activities. However, it remains unknown whether MCPs promote NSC neurogenesis after cerebral ischemic/reperfusion injury (IRI).


Promotion of Momordica Charantia polysaccharides on neural stem cell proliferation by increasing SIRT1 activity after cerebral ischemia/reperfusion in rats.

  • Juyun Ma‎ et al.
  • Brain research bulletin‎
  • 2021‎

The deacetylase SIRT1 has been reported to play a critical role in regulating neurogenesis, which may be an adaptive processes contributing to recovery after stroke. Our previous work showed that the antioxidant capacity of Momordica charantia polysaccharides (MCPs) could protect against cerebral ischemia/reperfusion (I/R) after stroke. However, whether the protective effect of MCPs on I/R injury is related to neural stem cell (NSC) proliferation remains unclear. In the present study, we designed invivo and invitro experiments to elucidate the underlying mechanisms by which MCPs promote endogenous NSC proliferation during cerebral I/R. Invivo results showed that MCPs rescued the memory and learning abilities of rats after I/R damage and enhanced NSC proliferation in the rat subventricular zone (SVZ) and subgrannular zone (SGZ) during I/R. Invitro experiments demonstrated that MCPs could stimulate the proliferation of C17.2 cells under oxygen-glucose deprivation (OGD) conditions. Further studies revealed that the proliferation-promoting mechanism of MCPs relied on increasing the activity of SIRT1, decreasing the level of acetylation of β-catenin in the cytoplasm, and then triggering the translocation of β-catenin into the nucleus. These data provide experimental evidence that the up-regulation of SIRT1 activity by MCPs led to an increased cytoplasmic deacetylation of β-catenin, which promoted translocation of β-catenin to the nucleus to participate in the signaling pathway involved in NSC proliferation. The present study reveals that MCPs function as a therapeutic drug to promote stroke recovery by increasing the activity of SIRT1, decreasing the level of acetylated β-catenin, promoting the nuclear translocation of β-catenin and thereby increasing endogenous NSC proliferation.


Heat shock protein 65 promotes atherosclerosis through impairing the properties of high density lipoprotein.

  • Haige Sun‎ et al.
  • Atherosclerosis‎
  • 2014‎

To explicit whether the functions of high density lipoprotein (HDL) are impaired in murine atherosclerosis by subcutaneous immunization with recombinant mycobacterial heat shock protein 65 (HSP65).


Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation.

  • Neng Wang‎ et al.
  • Oncotarget‎
  • 2015‎

Breast cancer stem cells (CSCs) are considered as the root of mammary tumorigenesis. Previous studies have demonstrated that ISL efficiently limited the activities of breast CSCs. However, the cancer prevention activities of ISL and its precise molecular mechanisms remain largely unknown. Here, we report a novel function of ISL as a natural demethylation agent targeting WIF1 to prevent breast cancer. ISL administration suppressed in vivo breast cancer initiation and progression, accompanied by reduced CSC-like populations. A global gene expression profile assay further identified WIF1 as the main response gene of ISL treatment, accompanied by the simultaneous downregulation of β-catenin signaling and G0/G1 phase arrest in breast CSCs. In addition, WIF1 inhibition significantly relieved the CSC-limiting effects of ISL and methylation analysis further revealed that ISL enhanced WIF1 gene expression via promoting the demethylation of its promoter, which was closely correlated with the inhibition of DNMT1 methyltransferase. Molecular docking analysis finally revealed that ISL could stably dock into the catalytic domain of DNMT1. Taken together, our findings not only provide preclinical evidence to demonstrate the use of ISL as a dietary supplement to inhibit mammary carcinogenesis but also shed novel light on WIF1 as an epigenetic target for breast cancer prevention.


Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway.

  • Juanjuan Gong‎ et al.
  • Neuropharmacology‎
  • 2015‎

Momordica charantia (MC) is a medicinal plant for stroke treatment in Traditional Chinese Medicine, but its active compounds and molecular targets are unknown yet. M. charantia polysaccharide (MCP) is one of the important bioactive components in MC. In the present study, we tested the hypothesis that MCP has neuroprotective effects against cerebral ischemia/reperfusion injury through scavenging superoxide (O2(-)), nitric oxide (NO) and peroxynitrite (ONOO(-)) and inhibiting c-Jun N-terminal protein kinase (JNK3) signaling cascades. We conducted experiments with in vivo global and focal cerebral ischemia/reperfusion rat models and in vitro oxygen glucose deprivation (OGD) neural cells. The effects of MCP on apoptotic cell death and infarction volume, the bioactivities of scavenging O2(-), NO and ONOO(-), inhibiting lipid peroxidation and modulating JNK3 signaling pathway were investigated. Major results are summarized as below: (1) MCP dose-dependently attenuated apoptotic cell death in neural cells under OGD condition in vitro and reduced infarction volume in ischemic brains in vivo; (2) MCP had directing scavenging effects on NO, O2(-) and ONOO(-) and inhibited lipid peroxidation; (3) MCP inhibited the activations of JNK3/c-Jun/Fas-L and JNK3/cytochrome C/caspases-3 signaling cascades in ischemic brains in vivo. Taken together, we conclude that MCP could be a promising neuroprotective ingredient of M. charantia and its mechanisms could be at least in part attributed to its antioxidant activities and inhibiting JNK3 signaling cascades during cerebral ischemia/reperfusion injury.


Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway.

  • Zhiyu Wang‎ et al.
  • PloS one‎
  • 2013‎

Angiogenesis is crucial for cancer initiation, development and metastasis. Identifying natural botanicals targeting angiogenesis has been paid much attention for drug discovery in recent years, with the advantage of increased safety. Isoliquiritigenin (ISL) is a dietary chalcone-type flavonoid with various anti-cancer activities. However, little is known about the anti-angiogenic activity of isoliquiritigenin and its underlying mechanisms. Herein, we found that ISL significantly inhibited the VEGF-induced proliferation of human umbilical vein endothelial cells (HUVECs) at non-toxic concentration. A series of angiogenesis processes including tube formation, invasion and migration abilities of HUVECs were also interrupted by ISL in vitro. Furthermore, ISL suppressed sprout formation from VEGF-treated aortic rings in an ex-vivo model. Molecular mechanisms study demonstrated that ISL could significantly inhibit VEGF expression in breast cancer cells via promoting HIF-1α (Hypoxia inducible factor-1α) proteasome degradation and directly interacted with VEGFR-2 to block its kinase activity. In vivo studies further showed that ISL administration could inhibit breast cancer growth and neoangiogenesis accompanying with suppressed VEGF/VEGFR-2 signaling, elevated apoptosis ratio and little toxicity effects. Molecular docking simulation indicated that ISL could stably form hydrogen bonds and aromatic interactions within the ATP-binding region of VEGFR-2. Taken together, our study shed light on the potential application of ISL as a novel natural inhibitor for cancer angiogenesis via the VEGF/VEGFR-2 pathway. Future studies of ISL for chemoprevention or chemosensitization against breast cancer are thus warranted.


Rehmapicroside ameliorates cerebral ischemia-reperfusion injury via attenuating peroxynitrite-mediated mitophagy activation.

  • Yifan Zhang‎ et al.
  • Free radical biology & medicine‎
  • 2020‎

Peroxynitrite (ONOO-)-mediated mitophagy activation represents a vital pathogenic mechanism in ischemic stroke. Our previous study suggests that ONOO- mediates Drp1 recruitment to the damaged mitochondria for excessive mitophagy, aggravating cerebral ischemia/reperfusion injury and the ONOO--mediated mitophagy activation could be a crucial therapeutic target for improving outcome of ischemic stroke. In the present study, we tested the neuroprotective effects of rehmapicroside, a natural compound from a medicinal plant, on inhibiting ONOO--mediated mitophagy activation, attenuating infarct size and improving neurological functions by using the in vitro cultured PC12 cells exposed to oxygen glucose deprivation with reoxygenation (OGD/RO) condition and the in vivo rat model of middle cerebral artery occlusion (MCAO) for 2 h of transient cerebral ischemia plus 22 h of reperfusion. The major discoveries include following aspects: (1) Rehmapicroside reacted with ONOO- directly to scavenge ONOO-; (2) Rehmapicroside decreased O2- and ONOO-, up-regulated Bcl-2 but down-regulated Bax, Caspase-3 and cleaved Caspase-3, and down-regulated PINK1, Parkin, p62 and the ratio of LC3-II to LC3-I in the OGD/RO-treated PC12 cells; (3) Rehmapicroside suppressed 3-nitrotyrosine formation, Drp1 nitration as well as NADPH oxidases and iNOS expression in the ischemia-reperfused rat brains; (4) Rehmapicroside prevented the translocations of PINK1, Parkin and Drp1 into the mitochondria for mitophagy activation in the ischemia-reperfused rat brains; (5) Rehmapicroside ameliorated infarct sizes and improved neurological deficit scores in the rats with transient MCAO cerebral ischemia. Taken together, rehmapicroside could be a potential drug candidate against cerebral ischemia-reperfusion injury, and its neuroprotective mechanisms could be attributed to inhibiting the ONOO--mediated mitophagy activation.


Bushen-Yizhi formula ameliorates mitochondrial dysfunction and oxidative stress via AMPK/Sirt1 signaling pathway in D-gal-induced aging rats.

  • Yanfang Liao‎ et al.
  • Chinese medicine‎
  • 2023‎

As a major risk factor for neurodegenerative diseases, aging has become a heavy health care burden worldwide. Age-related decline in mitochondrial function and oxidative stress is strongly associated with neurodegeneration. The previous study demonstrated that Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine formula, is effective in reducing neurodegeneration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: