Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Methionine sulfoxide reductase B1 regulates proliferation and invasion by affecting mitogen-activated protein kinase pathway and epithelial-mesenchymal transition in u2os cells.

  • Hui Li‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Methionine sulfoxide reductase B1 (MsrB1), a member of the selenoprotein family and contributes significantly to the reduction of methionine sulfoxides produced from reactive oxygen species (ROS). However, few studies have examined the role of MsrB1 in tumors. Here We tested the proliferation and invasion in MsrB1 knockdown u2os cells under H2O2/thioredoxin. As shown in our result, knockdown of MsrB1 inhibited the proliferation of u2os cells and regulates mitogen-activated protein kinase (MAPK) pathway by down-regulation of Erk, MeK phosphorylation and p53 expression in u2os cells. In a xenograft tumorigenicity mice, MsrB1 knockdown effectively inhibited tumor growth. Furthermore, MsrB1 knockdown resulted in migration and invasion reducement of u2os cells. MsrB1 regulates epithelial-mesenchymal transition (EMT) via affecting cytoskeleton by increasing E-cadherin expression and decreasing N-cadherin, TGF-β1, slug, fibronectin, vimentin, c-myc, snail and β-catenin expressions. In vivo, MsrB1 shRNAi can inhibit lung metastasis in metastasis model. In conclusion, MsrB1 regulates proliferation and invasion of u2os cells by affecting MAPK pathway and EMT, and MsrB1 gene may be a novel therapeutic target against tumors.


Fibroblast growth factor 21 ameliorates vascular calcification by inhibiting osteogenic transition in vitamin D3 plus nicotine-treated rats.

  • Yuchen Shi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

FGF21, a special member of FGF superfamily, has been proven to have pleiotropic metabolic effects and many potential therapeutic action in various metabolic disorders. Vascular calcification (VC), a perplexing clinical issue, is a major risk factor for many cardiovascular diseases, especially for patients with some metabolic diseases. However, the role of FGF21 on VC in vivo remains unclear. Thus, in this study, we observed the effect and mechanism of FGF21 on VC induced by vitamin D3 plus nicotine (VDN) treated rats. After four weeks' treatment, the calcium overload is mainly manifested in the increased blood pressure, aortic calcium content and ALP activity. Also, the HE and Alizarin-red S staining showed the structural damage of calcified vessel walls. In addition, the level of endogenous FGF21/β-Klotho/FGFR1 axis was up-regulated in the aortas of VC rats. Furthermore, exogenous FGF21 treatment significantly ameliorated the aortic injury and calcification in VC rats, and the level of β-Klotho and FGFR1 were furtherly increase. Moreover, FGF21 inhibited the osteogenic transition of VSMCs by down-regulating the expression of bone-associated proteins such as osteopontin (OPN), osteocalcin (OCN) and bone morphogenetic protein-2 (BMP-2), together with restored the expression of SM22α and SM α-actin, which are two of lineage markers in VSMCs. We provide the first evidence that FGF21 can inhibit the development of VC by inhibiting the osteogenic transition of VSMCs in rats. FGF21 might be an efficient endogenous vasoprotective factor for calcification.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: