Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Cyclic AMP increases COX-2 expression via mitogen-activated kinase in human myometrial cells.

  • Li Chen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2012‎

Cyclic AMP (cAMP) is the archetypal smooth muscle relaxant, mediating the effects of many hormones and drugs. However, recently PGI(2) , acting via cAMP/PKA, was found to increase contraction-associated protein expression in myometrial cells and to promote oxytocin-driven myometrial contractility. Cyclo-oxygenase-2 (COX-2) is the rate-limiting enzyme in prostaglandin synthesis, which is critical to the onset and progression of human labour. We have investigated the impact of cAMP on myometrial COX-2 expression, synthesis and activity. Three cAMP agonists (8-bromo-cAMP, forskolin and rolipram) increased COX-2 mRNA expression and further studies confirmed that this was associated with COX-2 protein synthesis and activity (increased PGE(2) and PGI(2) in culture supernatant) in primary cultures of human myometrial cells. These effects were neither reproduced by specific agonists nor inhibited by specific inhibitors of known cAMP-effectors (PKA, EPAC and AMPK). We then used shRNA to knockdown the same effectors and another recently described cAMP-effector PDZ-GEF(1-2) , without changing the response to cAMP. We found that MAPK activation mediated the cAMP effects on COX-2 expression and that PGE(2) acts through EP-2 to activate MAPK and increase COX-2. These data provide further evidence in support of a dual role for cAMP in the regulation of myometrial function.


Proteomic analysis of metabolic, cytoskeletal and stress response proteins in human heart failure.

  • Weiming Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2012‎

Human heart failure is a complex syndrome and a primary cause of morbidity and mortality in the world. However, the molecular pathways involved in the remodelling process are poorly understood. In this study, we performed exhaustive global proteomic surveys of cardiac ventricle isolated from failing and non-failing human hearts, and determined the regulatory pathway to uncover the mechanism underlying heart failure. Two-dimensional gel electrophoresis (2-DE) coupled with tandem mass spectrometry was used to identify differentially expressed proteins in specimens from failing (n = 9) and non-failing (n = 6) human hearts. A total of 25 proteins with at least 1.5-fold change in the failing heart were identified; 15 proteins were up-regulated and 10 proteins were down-regulated. The altered proteins belong to three broad functional categories: (i) metabolic [e.g. NADH dehydrogenase (ubiquinone), dihydrolipoamide dehydrogenase, and the cytochrome c oxidase subunit]; (ii) cytoskeletal (e.g. myosin light chain proteins, troponin I type 3 and transthyretin) and (iii) stress response (e.g. αB-crystallin, HSP27 and HSP20). The marked differences in the expression of selected proteins, including HSP27 and HSP20, were further confirmed by Western blot. Thus, we carried out full-scale screening of the protein changes in human heart failure and profiled proteins that may be critical in cardiac dysfunction for future mapping.


Identification of micro-RNA networks in end-stage heart failure because of dilated cardiomyopathy.

  • Xiaoming Zhu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2013‎

Micro-RNAs regulate gene expression by directly binding to the target mRNAs. The goal of the study was to examine the expression profiling of miRNAs in human failing hearts and identify the key miRNAs that regulate molecular signalling networks and thus contribute to this pathological process. The levels of miRNAs and expressed genes were analysed in myocardial biopsy samples from patients with end-stage heart failure (n = 14) and those from normal heart samples (n = 8). Four networks were built including the Gene regulatory network, Signal-Network, miRNA-GO-Network and miRNA-Gene-Network. According to the fold change in the network and probability values in the microarray cohort, RT-PCR was performed to measure the expression of five of the 72 differentially regulated miRNAs. miR-340 achieved statistically significant. miR-340 was identified for the first time in cardiac pathophysiological condition. We overexpressed miR-340 in cultured neonatal rat cardiomyocytes to identify whether miR-340 plays a determining role in the progression of heart failure. ANP, BNP and caspase-3 were significantly elevated in the miR-340 transfected cells compared with controls (P < 0.05). The cross-sectional area of overexpressing miR-340 cardiomyocytes (1952.22 ± 106.59) was greater (P < 0.0001) than controls (1059.99 ± 45.59) documented by Laser Confocal Microscopy. The changes of cellular structure and the volume were statistical significance. Our study provided a comprehensive miRNA expression profiling in the end-stage heart failure and identified miR-340 as a key miRNA contributing to the occurrence and progression of heart failure. Our discoveries provide novel therapeutic targets for patients with heart failure.


Inhibition of LPS-induced production of inflammatory factors in the macrophages by mono-carbonyl analogues of curcumin.

  • Guang Liang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

Curcumin (diferuloylmethane) is an orange-yellow compound from turmeric (Curcuma longa), a spice found in curry powder. Traditionally known for its anti-inflammatory effects, curcumin has established itself in the last two decades to be a potent immunomodulatory agent that can regulate the activation of a variety of immunocytes and the expression of inflammatory factors. Considering that the beta-diketone moiety of curcumin may result in its instability and poor metabolic property, we previously designed a series of mono-carbonyl analogues of curcumin with enhanced stability by deleting this moiety. These compounds demonstrate improved pharmacokinetic profiles both in vitro and in vivo. In this study, we reported a total of 44 mono-carbonyl analogues, which have been evaluated for the inhibitory activities against LPS-induced TNF-alpha and IL-6 release in the macrophages. Based on the screening results of these analogues, five active compounds A01, A03, A13, B18 and C22 were investigated to inhibit TNF-alpha and IL-6 release in a dose-dependent manner, three of which further demonstrated inhibitory effects on LPS-induced TNF-alpha, IL-1beta, IL-6, MCP-1, COX-2, PGES, iNOS and p65 NF-kappaB mRNA production. The results indicated that these mono-carbonyl analogues may possess anti-inflammatory activities similar to curcumin despite the absence of the beta-diketone. These mono-carbonyl analogues may be a favourable alternative for the development of curcumin-based anti-inflammatory drugs both pharmacokinetically and pharmacologically. We further examined the biological properties of A13, the only hydrosoluble analogue when combined with hydrochloric acid. The results showed a dose-dependent inhibition of LPS-induced cytokine production. These data further indicated that compound A13 may be explored as a promising anti-inflammatory molecule.


bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3K/Akt/ERK1/2 pathway.

  • Zhouguang Wang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

Extensive research focused on finding effective strategies to prevent or improve recovery from myocardial ischaemia/reperfusion (I/R) injury. Basic fibroblast growth factor (bFGF) has been shown to have therapeutic potential in some heart disorders, including ischaemic injury. In this study, we demonstrate that bFGF administration can inhibit the endoplasmic reticulum (ER) stress and mitochondrial dysfunction induced in the heart in a mouse model of I/R injury. In vitro, bFGF exerts a protective effect by inhibiting the ER stress response and mitochondrial dysfunction proteins that are induced by tert-Butyl hydroperoxide (TBHP) treatment. Both of these in vivo and in vitro effects are related to the activation of two downstream signalling pathways, PI3K/Akt and ERK1/2. Inhibition of these PI3K/Akt and ERK1/2 pathways by specific inhibitors, LY294002 and PD98059, partially reduces the protective effect of bFGF. Taken together, our results indicate that the cardioprotective role of bFGF involves the suppression of ER stress and mitochondrial dysfunction in ischaemic oxidative damage models and oxidative stress-induced H9C2 cell injury; furthermore, these effects underlie the activation of the PI3K/Akt and ERK1/2 signalling pathways.


Cellular repressor of E1A-stimulated genes attenuates cardiac hypertrophy and fibrosis.

  • Zhouyan Bian‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

Cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein of 220 amino acids. It has been proposed that CREG acts as a ligand that enhances differentiation and/or reduces cell proliferation. CREG has been shown previously to attenuate cardiac hypertrophy in vitro. However, such a role has not been determined in vivo. In the present study, we tested the hypothesis that overexpression of CREG in the murine heart would protect against cardiac hypertrophy and fibrosis in vivo. The effects of constitutive human CREG expression on cardiac hypertrophy were investigated using both in vitro and in vivo models. Cardiac hypertrophy was produced by aortic banding and infusion of angiotensin II in CREG transgenic mice and control animals. The extent of cardiac hypertrophy was quantitated by two-dimensional and M-mode echocardiography as well as by molecular and pathological analyses of heart samples. Constitutive over-expression of human CREG in the murine heart attenuated the hypertrophic response, markedly reduced inflammation. Cardiac function was also preserved in hearts with increased CREG levels in response to hypertrophic stimuli. These beneficial effects were associated with attenuation of the mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase 1 (MEK-ERK1)/2-dependent signalling cascade. In addition, CREG expression blocked fibrosis and collagen synthesis through blocking MEK-ERK1/2-dependent Smad 2/3 activation in vitro and in vivo. Therefore, the expression of CREG improves cardiac functions and inhibits cardiac hypertrophy, inflammation and fibrosis through blocking MEK-ERK1/2-dependent signalling.


Pre-treatment systemic immune-inflammation index is a useful prognostic indicator in patients with breast cancer undergoing neoadjuvant chemotherapy.

  • Li Chen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

The systemic immune-inflammation index (SII = N × P/L) based on neutrophil (N), platelet (P) and lymphocyte (L) counts is used to predict the survival of patients with malignant tumours and can fully reflect the balance between host inflammatory and immune status. This study is conducted to explore the potential prognostic significance of SII in patients with breast cancer undergoing neoadjuvant chemotherapy (NACT). A total of 262 patients with breast cancer received NACT were enrolled in this study. According to the receiver operating characteristic curve, the optimal cut-off value of SII was divided into two groups: low SII group (<602 × 109 /L) and high SII group (≥602 × 109 /L). The associations between breast cancer and clinicopathological variables by SII were determined by chi-squared test or Fisher's exact test. The Kaplan-Meier plots and log-rank test were used to determine clinical outcomes of disease-free survival (DFS) and overall survival (OS). The prognostic value of SII was analysed by univariate and multivariate Cox proportional hazards regression models. The toxicity of NACT was accessed by National Cancer Institute Common Toxicity Criteria (NCICTC). According to univariate and multivariate Cox regression survival analyses, the results showed that the value of SII had prognostic significance for DFS and OS. The patients with low SII value had longer DFS and OS than those with high SII value (31.11 vs 40.76 months, HR: 1.075, 95% CI: 0.718-1.610, P = .006; 44.47 vs 53.68 months, HR: 1.051, 95% CI: 0.707-1.564, P = .005, respectively). The incidence of DFS and OS in breast cancer patients with low SII value was higher than that in those patients with high SII value in 3-, 5- and 10-year rates. The common toxicities after NACT were haematological and gastrointestinal reaction, and there were no differences by SII for the assessment of side effects of neoadjuvant chemotherapy. Meanwhile, the results also proved that breast cancer patients with low SII value and high Miller and Payne grade (MPG) survived longer than those breast cancer with high SII value and low MPG grade. In patients without lymph vessel invasion, these breast cancer patients with low SII value had better prognosis and lower recurrence rates than those with high SII value. Pre-treatment SII with the advantage of reproducible, convenient and non-invasive was a useful prognostic indicator for breast cancer patients undergoing neoadjuvant chemotherapy and is a promising biomarker for breast cancer on treatment strategy decisions.


Duvelisib attenuates bleomycin-induced pulmonary fibrosis via inhibiting the PI3K/Akt/mTOR signalling pathway.

  • Xiaohe Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2023‎

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that seriously threatens the health of patients. The pathogenesis of IPF is still unclear, and there is a lack of effective therapeutic drugs. Myofibroblasts are the main effector cells of IPF, leading to excessive deposition of extracellular matrix (ECM) and promoting the progression of fibrosis. Inhibiting the excessive activation and relieving autophagy blockage of myofibroblasts is the key to treat IPF. PI3K/Akt/mTOR pathway plays a key regulatory role in promoting fibroblast activation and autophagy inhibition in lung fibrosis. Duvelisib is a PI3K inhibitor that can simultaneously inhibit the activities of PI3K-δ and PI3K-γ, and is mainly used for the treatment of relapsed/refractory chronic lymphocytic leukaemia (CLL) and small lymphocytic lymphoma tumour (SLL). In this study, we aimed to examine the effects of Duvelisib on pulmonary fibrosis. We used a mouse model of bleomycin-induced pulmonary fibrosis to evaluate the effects of Duvelisib on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of Duvelisib in lung fibroblasts in vitro. The in vivo experiments showed that Duvelisib significantly alleviated bleomycin-induced collagen deposition and improved pulmonary function. In vitro and in vivo pharmacological experiments showed that Duvelisib dose-dependently suppressed lung fibroblast activation and improved autophagy inhibition by inhibiting the phosphorylation of PI3K, Akt and mTOR. Our results indicate that Duvelisib can alleviate the severity of pulmonary fibrosis and provide potential drugs for the treatment of pulmonary fibrosis.


MARCH5 restores endothelial cell function against ischaemic/hypoxia injury via Akt/eNOS pathway.

  • Wenhua Lei‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

MARCH5 is a critical regulator of mitochondrial dynamics, apoptosis and mitophagy. However, its role in cardiovascular system remains poorly understood. This study aimed to investigate the role of MARCH5 in endothelial cell (ECs) injury and the involvement of the Akt/eNOS signalling pathway in this process. Rat models of myocardial infarction (MI) and human cardiac microvascular endothelial cells (HCMECs) exposed to hypoxia (1% O2 ) were used in this study. MARCH5 expression was significantly reduced in ECs of MI hearts and ECs exposed to hypoxia. Hypoxia inhibited the proliferation, migration and tube formation of ECs, and these effects were aggravated by knockdown of MARCH5 but antagonized by overexpressed MARCH5. Overexpression of MARCH5 increased nitric oxide (NO) content, p-eNOS and p-Akt, while MARCH5 knockdown exerted the opposite effects. The protective effects mediated by MARCH5 overexpression on ECs could be inhibited by eNOS inhibitor L-NAME and Akt inhibitor LY294002. In conclusion, these results indicated that MARCH5 acts as a protective factor in ischaemia/hypoxia-induced ECs injury partially through Akt/eNOS pathway.


Qiliqiangxin inhibits angiotensin II-induced transdifferentiation of rat cardiac fibroblasts through suppressing interleukin-6.

  • Jingmin Zhou‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

Qiliqiangxin (QL), a traditional Chinese medicine, had long been used to treat chronic heart failure. Recent studies revealed that differentiation of cardiac fibroblasts (CFs) into myofibroblasts played an important role in cardiac remodelling and development of heart failure, however, little was known about the underlying mechanism and whether QL treatment being involved. This study aimed to investigate the effects of QL on angiotensin II (AngII)-induced CFs transdifferentiation. Study was performed on in vitro cultured CFs from Sprague-Dawley rats. CFs differentiation was induced by AngII, which was attenuated by QL through reducing transforming growth factor-β1 (TGF-β1 ) and α-smooth muscle actin (α-SMA). Our data showed that AngII-induced IL-6 mRNA as well as typeI and typeIII collagens were reduced by QL. IL-6 deficiency could suppress TGF-β1 and α-SMA, and both IL-6 siRNA and QL-mediated such effect was reversed by foresed expression of recombined IL-6. Increase in actin stress fibres reflected the process of CFs differentiation, we found stress fibres were enhanced after AngII stimulation, which was attenuated by pre-treating CFs with QL or IL-6 siRNA, and re-enhanced after rIL-6 treatment. Importantly, we showed that calcineurin-dependent NFAT3 nuclear translocation was essential to AngII-mediated IL-6 transcription, QL mimicked the effect of FK506, the calcineurin inhibitor, on suppression of IL-6 expression and stress fibres formation. Collectively, our data demonstrated the negative regulation of CFs differentiation by QL through an IL-6 transcriptional mechanism that depends on inhibition of calcineurin/NFAT3 signalling.


P53/PANK1/miR-107 signalling pathway spans the gap between metabolic reprogramming and insulin resistance induced by high-fat diet.

  • Lu Yang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

High-fat diet (HFD) leads to obesity, type II diabetes mellitus (T2DM) and increases the coincidence of cardiovascular diseases and cancer. Insulin resistance (IR) is considered as the 'common soil' of those diseases. Furthermore, people on HFD showed restrained glycolysis and enhanced fatty acid oxidation, which is the so-called metabolic reprogramming. However, the relationship between metabolic reprogramming and IR induced by HFD is still unclear. Here, we demonstrate that PANK1 and miR-107 were up-regulated in the liver tissue of mice on HFD for 16 weeks and involved in metabolic reprogramming induced by palmitate acid (PA) incubation. Importantly, miR-107 within an intron of PANK1 gene facilitated IR by targeting caveolin-1 in AML12 cells upon PA incubation. Moreover, we identify that HFD enhanced P53 expression, and activation of P53 with nutlin-3a induced PANK1 and miR-107 expression simultaneously in transcriptional level, leading to metabolic reprogramming and IR, respectively. Consistently, inhibition of P53 with pifithrin-α hydrobromide ameliorated PA-induced metabolic reprogramming and IR. Thus, our results revealing a new mechanism by which P53 regulate metabolism. In addition, the results distinguished the different roles of PANK1 and its intron miR-107 in metabolic regulation, which will provide more accurate intervention targets for the treatment of metabolic diseases.


Curcumin attenuates angiogenesis in liver fibrosis and inhibits angiogenic properties of hepatic stellate cells.

  • Feng Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2014‎

Hepatic fibrosis is concomitant with sinusoidal pathological angiogenesis, which has been highlighted as novel therapeutic targets for the treatment of chronic liver disease. Our prior studies have demonstrated that curcumin has potent antifibrotic activity, but the mechanisms remain to be elucidated. The current work demonstrated that curcumin ameliorated fibrotic injury and sinusoidal angiogenesis in rat liver with fibrosis caused by carbon tetrachloride. Curcumin reduced the expression of a number of angiogenic markers in fibrotic liver. Experiments in vitro showed that the viability and vascularization of rat liver sinusoidal endothelial cells and rat aortic ring angiogenesis were not impaired by curcumin. These results indicated that hepatic stellate cells (HSCs) that are characterized as liver-specific pericytes could be potential target cells for curcumin. Further investigations showed that curcumin inhibited VEGF expression in HSCs associated with disrupting platelet-derived growth factor-β receptor (PDGF-βR)/ERK and mTOR pathways. HSC motility and vascularization were also suppressed by curcumin associated with blocking PDGF-βR/focal adhesion kinase/RhoA cascade. Gain- or loss-of-function analyses revealed that activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) was required for curcumin to inhibit angiogenic properties of HSCs. We concluded that curcumin attenuated sinusoidal angiogenesis in liver fibrosis possibly by targeting HSCs via a PPAR-γ activation-dependent mechanism. PPAR-γ could be a target molecule for reducing pathological angiogenesis during liver fibrosis.


ShRNA knock-down of CXCR7 inhibits tumour invasion and metastasis in hepatocellular carcinoma after transcatheter arterial chemoembolization.

  • Zhong-Wei Zhao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2017‎

To investigate the effects of lentiviral vector-mediated shRNA suppressing CXCR7 on tumour invasion and metastasis in hepatocellular carcinoma (HCC) after transcatheter arterial chemoembolization (TACE). HCCLM3 cell lines were cultured and assigned into the CXCR7-shRNA, negative control (NC) and blank groups. The qRT-PCR and Western blotting were applied to detect the mRNA and protein expressions of CXCR7, CXCR4 and MMP-2 in HCCLM3 cells. Cell proliferation and invasion were evaluated by MTT and Transwell assays. A Buffalo rat model of HCC was established. Fifty model rats were divided into the CXCR7-shRNA + TACE, CXCR7-shRNA, TACE, NC and control groups. Immunohistochemistry was performed to detect the expressions of CXCR7, MMP-2, vascular endothelial growth factor (VEGF) and intratumoral CD31-positive vessel count in tumour tissues of mice. Compared with the blank and NC groups, the mRNA and protein expressions of CXCR7 and MMP-2 were decreased in the CXCR7-shRNA group. The cell proliferation and invasion rates of the CXCR7-shRNA group were lower than the blank and NC groups. At the 4th week after TACE, tumour weight of the CXCR7-shRNA + TACE group increased continuously. The CXCR7-shRNA + TACE group showed longer survival time and smaller tumour sizes than other groups. Compared with other groups, the CXCR7-shRNA + TACE and CXCR7-shRNA groups had less number of lung metastatic nodules and lower expressions of CXCR7, MMP-2, VEGF and CD31-positive vessel count. CXCR7-shRNA inhibits tumour invasion and metastasis to improve the efficacy of TACE in HCC by reducing the expressions of CXCR7, MMP-2 and VEGF.


The bifunctional SDF-1-AnxA5 fusion protein protects cardiac function after myocardial infarction.

  • Fang-Yang Huang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Stromal cell-derived factor-1 (SDF-1) is a well-characterized cytokine that protects heart from ischaemic injury. However, the beneficial effects of native SDF-1, in terms of promoting myocardial repair, are limited by its low concentration in the ischaemic myocardium. Annexin V (AnxA5) can precisely detect dead cells in vivo. As massive cardiomyocytes die after MI, we hypothesize that AnxA5 can be used as an anchor to carry SDF-1 to the ischaemic myocardium. In this study, we constructed a fusion protein consisting of SDF-1 and AnxA5 domains. The receptor competition assay revealed that SDF-1-AnxA5 had high binding affinity to SDF-1 receptor CXCR4. The treatment of SDF-1-AnxA5 could significantly promote phosphorylation of AKT and ERK and induce chemotactic response, angiogenesis and cell survival in vitro. The binding membrane assay and immunofluorescence revealed that AnxA5 domain had the ability to specifically recognize and bind to cells injured by hypoxia. Furthermore, SDF-1-AnxA5 administered via peripheral vein could accumulate at the infarcted myocardium in vivo. The treatment with SDF-1-AnxA5 attenuated cell apoptosis, enhanced angiogenesis, reduced infarcted size and improved cardiac function after mouse myocardial infarction. Our results suggest that the bifunctional SDF-1-AnxA5 can specifically bind to dead cells. The systemic administration of bifunctional SDF-1-AnxA5 effectively provides cardioprotection after myocardial infarction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: