Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 873 papers

Rspo1-activated signalling molecules are sufficient to induce ovarian differentiation in XY medaka (Oryzias latipes).

  • Linyan Zhou‎ et al.
  • Scientific reports‎
  • 2016‎

In contrast to our understanding of testicular differentiation, ovarian differentiation is less well understood in vertebrates. In mammals, R-spondin1 (Rspo1), an activator of Wnt/β-catenin signaling pathway, is located upstream of the female sex determination pathway. However, the functions of Rspo1 in ovarian differentiation remain unclear in non-mammalian species. In order to elucidate the detailed functions of Rspo/Wnt signaling pathway in fish sex determination/differentiation, the ectopic expression of the Rspo1 gene was performed in XY medaka (Oryzias latipes). The results obtained demonstrated that the gain of Rspo1 function induced femininity in XY fish. The overexpression of Rspo1 enhanced Wnt4b and β-catenin transcription, and completely suppressed the expression of male-biased genes (Dmy, Gsdf, Sox9a2 and Dmrt1) as well as testicular differentiation. Gonadal reprograming of Rspo1-over-expressed-XY (Rspo1-OV-XY) fish, induced the production of female-biased genes (Cyp19a1a and Foxl2), estradiol-17β production and further female type secondary sexuality. Moreover, Rspo1-OV-XY females were fertile and produced successive generations. Promoter analyses showed that Rspo1 transcription was directly regulated by DM domain genes (Dmy, the sex-determining gene, and Dmrt1) and remained unresponsive to Foxl2. Taken together, our results strongly suggest that Rspo1 is sufficient to activate ovarian development and plays a decisive role in the ovarian differentiation in medaka.


Identification of "Multiple Components-Multiple Targets-Multiple Pathways" Associated with Naoxintong Capsule in the Treatment of Heart Diseases Using UPLC/Q-TOF-MS and Network Pharmacology.

  • Xianghui Ma‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2016‎

Naoxintong capsule (NXT) is a commercial medicinal product approved by the China Food and Drug Administration which is used in the treatment of stroke and coronary heart disease. However, the research on the composition and mechanism of NXT is still lacking. Our research aimed to identify the absorbable components, potential targets, and associated pathways of NXT with network pharmacology method. We explored the chemical compositions of NXT based on UPLC/Q-TOF-MS. Then, we used the five principles of drug absorption to identify absorbable ingredients. The databases of PharmMapper, Universal Protein, and the Molecule Annotation System were used to predict the main targets and related pathways. By the five principles of drug absorption as a judgment rule, we identified 63 compositions that could be absorbed in the blood in all 81 chemical compositions. Based on the constructed networks by the significant regulated 123 targets and 77 pathways, the main components that mediated the efficacy of NXT were organic acids, saponins, and tanshinones. Radix Astragali was the critical herbal medicine in NXT, which contained more active components than other herbs and regulated more targets and pathways. Our results showed that NXT had a therapeutic effect on heart diseases through the pattern "multiple components-multiple targets-multiple pathways."


Comparative transcriptome analysis of peripheral blood mononuclear cells in hepatitis B-related acute-on-chronic liver failure.

  • Qian Zhou‎ et al.
  • Scientific reports‎
  • 2016‎

Analysis of the transcriptome of peripheral blood mononuclear cells (PBMCs) from patients with hepatitis B-related acute-on-chronic liver failure (HBV-ACLF) is essential to elucidate the pathogenesis of HBV-ACLF and identify HBV-ACLF-specific biomarkers. In this study, high-throughput sequencing was performed to characterize the transcriptome of PMBCs from patients with HBV-ACLF. Specifically, 2381 differentially expressed genes (DEGs) and 776 differentially expressed transcripts were identified through comparisons with patients with chronic hepatitis B (CHB) and healthy controls. Gene Ontology (GO) analysis identified 114 GO terms that were clustered into 12 groups. We merged 10 dysregulated genes selected from these grouped GO terms and non-clustered terms with four significant genes with a specificity of >0.8 in the HBV-ACLF patients to obtain a set of 13 unique genes. The quantitative real-time polymerase chain reaction (qRT-PCR) validation of the top six genes (CYP19A1, SEMA6B, INHBA, DEFT1P, AZU1 and DEFA4) was consistent with the results of messenger ribonucleic acid (mRNA) sequencing. A further receiver operating characteristic (ROC) analysis revealed that the areas under the ROC curves of the six genes were all >0.8, which indicated their significant diagnostic potentials for HBV-ACLF.


Disrupted Structural and Functional Connectivity in Prefrontal-Hippocampus Circuitry in First-Episode Medication-Naïve Adolescent Depression.

  • Haiyang Geng‎ et al.
  • PloS one‎
  • 2016‎

Evidence implicates abnormalities in prefrontal-hippocampus neural circuitry in major depressive disorder (MDD). This study investigates the potential disruptions in prefrontal-hippocampus structural and functional connectivity, as well as their relationship in first-episode medication-naïve adolescents with MDD in order to investigate the early stage of the illness without confounds of illness course and medication exposure.


Elongation Factor Tu and Heat Shock Protein 70 Are Membrane-Associated Proteins from Mycoplasma ovipneumoniae Capable of Inducing Strong Immune Response in Mice.

  • Fei Jiang‎ et al.
  • PloS one‎
  • 2016‎

Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae) is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu) and heat shock protein 70 (HSP 70) are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70), IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT) of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep.


CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells.

  • Li Zhu‎ et al.
  • Scientific reports‎
  • 2015‎

Gene targeting can be achieved by precise genetic modifications through homology-directed repair (HDR) after DNA breaks introduced by genome editing tools such as CRISPR/Cas9 system. The most common form of HDR is homologous recombination (HR). Binding to the DNA breaks by HR factors is thought to compete with non-homologous end joining (NHEJ), an alternative DNA repair pathway. Here, we knocked out the factors in NHEJ by CRISPR/Cas9 system in silkworm cells, so that increased the activities of HR up to 7-fold. Also efficient HR-mediated genome editing events occurred between the chromosomal BmTUDOR-SN gene and donor DNA sequences with an EGFP gene in the middle of two homologous arms for the target gene. Utilizing the NHEJ-deficient silkworm cells, we found that homologous arms as short as 100 bp in donor DNA could be designed to perform precise genome editing. These studies should greatly accelerate investigations into genome editing of silkworm.


Dysfunctional gut microbiota and relative co-abundance network in infantile eczema.

  • Heping Wang‎ et al.
  • Gut pathogens‎
  • 2016‎

Infantile eczema is an immunological disease that is characterized by itchy and dry skin. Recent studies have suggested that gut microbiota (GM) plays a role in the development and progression of eczema. To further evaluate this potential link, we collected feces from 19 infants with eczema and 14 infants without eczema and analyzed the molecular discrepancies between the two groups using 16S rDNA analysis.


R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase.

  • Huixin Tan‎ et al.
  • Marine drugs‎
  • 2016‎

R-Phycoerythrin (R-PE), one of the chemical constituents of red algae, could produce singlet oxygen upon excitation with the appropriate radiation and possibly be used in photodynamic therapy (PDT) for cancer. Documents reported that R-PE could inhibit cell proliferation in HepG2 and A549 cells, which was significative for cancer therapy. This is due to the fact that R-PE could kill cancer cells directly as well as by PDT. However, little is known about the cytotoxicity of R-PE to the SGC-7901 cell. In this study, it has been found that R-PE could inhibit SGC-7901 proliferation and induce cell apoptosis, which was achieved by arresting the SGC-7901 cell at S phase. CyclinA, CDK2 and CDC25A are proteins associated with the S phase, and it was found that R-PE could increase the expression of cyclin A protein and decrease the expression of CDK2 and CDC25A proteins. Thus, it was concluded that R-PE reduced the CDK2 protein activated through decreasing the CDC25A factor, which reduced the formation of Cyclin-CDK complex. The reduction of Cyclin-CDK complex made the SGC-7901 cells arrest at the S phase. Therefore, R-PE induced apoptosis by arresting the SGC-7901 cell at S phase was successful, which was achieved by the expression of the CDC25A protein, which reduced the CDK2 protein actived and the formation of Cyclin-CDK complex.


Identification of a stable major-effect QTL (Parth 2.1) controlling parthenocarpy in cucumber and associated candidate gene analysis via whole genome re-sequencing.

  • Zhe Wu‎ et al.
  • BMC plant biology‎
  • 2016‎

Parthenocarpy is an important trait for yield and quality in many plants. But due to its complex interactions with genetic and physiological factors, it has not been adequately understood and applied to breeding and production. Finding novel and effective quantitative trait loci (QTLs) is a critical step towards understanding its genetic mechanism. Cucumber (Cucumis sativus L.) is a typical parthenocarpic plant but the QTLs controlling parthenocarpy in cucumber were not mapped on chromosomes, and the linked markers were neither user-friendly nor confirmed by previous studies. Hence, we conducted a two-season QTL study of parthenocarpy based on the cucumber genome with 145 F2:3 families derived from a cross between EC1 (a parthenocarpic inbred line) and 8419 s-1 (a non-parthenocarpic inbred line) in order to map novel QTLs. Whole genome re-sequencing was also performed both to develop effective linked markers and to predict candidate genes.


Bcl11a Deficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype.

  • Sidinh Luc‎ et al.
  • Cell reports‎
  • 2016‎

B cell CLL/lymphoma 11A (BCL11A) is a transcription factor and regulator of hemoglobin switching that has emerged as a promising therapeutic target for sickle cell disease and thalassemia. In the hematopoietic system, BCL11A is required for B lymphopoiesis, yet its role in other hematopoietic cells, especially hematopoietic stem cells (HSCs) remains elusive. The extensive expression of BCL11A in hematopoiesis implicates context-dependent roles, highlighting the importance of fully characterizing its function as part of ongoing efforts for stem cell therapy and regenerative medicine. Here, we demonstrate that BCL11A is indispensable for normal HSC function. Bcl11a deficiency results in HSC defects, typically observed in the aging hematopoietic system. We find that downregulation of cyclin-dependent kinase 6 (Cdk6), and the ensuing cell-cycle delay, correlate with HSC dysfunction. Our studies define a mechanism for BCL11A in regulation of HSC function and have important implications for the design of therapeutic approaches to targeting BCL11A.


Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis.

  • Fang Huang‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS) production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP). Further, pretreatment with antioxidant N-acetylcysteine (NAC) effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway.


A brain-region-based meta-analysis method utilizing the Apriori algorithm.

  • Zhendong Niu‎ et al.
  • BMC neuroscience‎
  • 2016‎

Brain network connectivity modeling is a crucial method for studying the brain's cognitive functions. Meta-analyses can unearth reliable results from individual studies. Meta-analytic connectivity modeling is a connectivity analysis method based on regions of interest (ROIs) which showed that meta-analyses could be used to discover brain network connectivity.


AR-42 induces apoptosis in human hepatocellular carcinoma cells via HDAC5 inhibition.

  • Mingming Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

Histone deacetylases (HDACs) play critical roles in apoptosis and contribute to the proliferation of cancer cells. AR-42 is a novel Class I and II HDAC inhibitor that shows cytotoxicity against various human cancer cell lines. The present study aims to identify the target of AR-42 in hepatocellular carcinoma (HCC) as well as evaluate its therapeutic efficacy. We found that HDAC5 was upregulated in HCC tissues compared to adjacent normal tissues, and this was correlated with reduced patient survival. CCK8 and colony-formation assays showed that HDAC5 overexpression promotes proliferation in HCC cell lines. Treatment with AR-42 decreased HCC cell growth and increased caspase-dependent apoptosis, and this was rescued by HDAC5 overexpression. We demonstrated that AR-42 can inhibit the deacetylation activity of HDAC5 and its downstream targets in vitro and in vivo. Taken together, these results demonstrate for the first time that AR-42 targets HDAC5 and induces apoptosis in human hepatocellular carcinoma cells. AR-42 therefore shows potential as a new drug candidate for HCC therapy.


PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells.

  • Partha Pratim Das‎ et al.
  • Cell reports‎
  • 2015‎

Polycomb Repressive Complex 2 (PRC2) function and DNA methylation (DNAme) are typically correlated with gene repression. Here, we show that PRC2 is required to maintain expression of maternal microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) from the Gtl2-Rian-Mirg locus, which is essential for full pluripotency of iPSCs. In the absence of PRC2, the entire locus becomes transcriptionally repressed due to gain of DNAme at the intergenic differentially methylated regions (IG-DMRs). Furthermore, we demonstrate that the IG-DMR serves as an enhancer of the maternal Gtl2-Rian-Mirg locus. Further analysis reveals that PRC2 interacts physically with Dnmt3 methyltransferases and reduces recruitment to and subsequent DNAme at the IG-DMR, thereby allowing for proper expression of the maternal Gtl2-Rian-Mirg locus. Our observations are consistent with a mechanism through which PRC2 counteracts the action of Dnmt3 methyltransferases at an imprinted locus required for full pluripotency.


SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation.

  • Jintao Li‎ et al.
  • PLoS genetics‎
  • 2015‎

Little is known about how the size of meristem cells is regulated and whether it participates in the control of meristem size in plants. Here, we report our findings on shoebox (shb), a mild gibberellin (GA) deficient rice mutant that has a short root meristem size. Quantitative analysis of cortical cell length and number indicates that shb has shorter, rather than fewer, cells in the root meristem until around the fifth day after sowing, from which the number of cortical cells is also reduced. These defects can be either corrected by exogenous application of bioactive GA or induced in wild-type roots by a dose-dependent inhibitory effect of paclobutrazol on GA biosynthesis, suggesting that GA deficiency is the primary cause of shb mutant phenotypes. SHB encodes an AP2/ERF transcription factor that directly activates transcription of the GA biosynthesis gene KS1. Thus, root meristem size in rice is modulated by SHB-mediated GA biosynthesis that regulates the elongation and proliferation of meristem cells in a developmental stage-specific manner.


Purification and partial characterization of a new antitumor protein from Tegillarca granosa.

  • Shuangshuang Lv‎ et al.
  • Marine drugs‎
  • 2015‎

A new protein, coded as D2-3, was obtained from the marine organism Tegillarca granosa L. by anion exchange and hydrophobic chromatography. The purity of D2-3 was over 99.0% as measured by RP-HPLC. Its molecular weight was shown to be 20.320 kDa by ESI-MS/MS, and the isoelectric point of D2-3 was 4.70. The antitumor activity of D2-3 against four human tumor cell lines was measured by MTT assay. The conformational structure of D2-3 was further characterized by UV-vis, FT-IR and CD spectroscopy. Partial amino acid sequences of D2-3 were determined to be LMMTDVEESR, SSHMLSECRRK, KNGRNVDISHKDKG, SSDPTLMDPDDTNKDR, SSDKNTCSKTEYYTR and SSETMPYDVLDTNEMR via MALDI-TOF-MS and de novo sequencing.


Melatonin protects ADSCs from ROS and enhances their therapeutic potency in a rat model of myocardial infarction.

  • Ping Zhu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

Myocardial infarction (MI) is a major cause of death and disability worldwide. In the last decade, mesenchymal stem cells (MSCs) based cell therapy has emerged as a promising therapeutic strategy. Although great advance have been made using MSCs to treat MI, the low viability of transplanted MSCs severely limits the efficiency of MSCs therapy. Here, we show evidence that ex vivo pre-treatment with melatonin, an endogenous hormone with newly found anti-oxidative activity, could improve survival and function of adipose tissue derived MSCs (ADSCs) in vitro as well as in vivo. ADSCs with 5 μM melatonin pre-treatment for 24 hrs showed increased expression of the antioxidant enzyme catalase and Cu/Zn superoxide dismutase (SOD-1), as well as pro-angiogenic and mitogenic factors like insulin-like growth factor 1, basic fibroblast growth factor, hepatocyte growth factor (HGF), epidermal growth factor. Furthermore, melatonin pre-treatment protected MSCs from reactive oxygen species (ROS) induced apoptosis both directly by promoting anti-apoptosis kinases like p-Akt as well as blocking caspase cascade, and indirectly by restoring the ROS impaired cell adhesion. Using a rat model of MI, we found that melatonin pre-treatment enhanced the viability of engrafted ADSCs, and promoted their therapeutic potency. Hopefully, our results may shed light on the design of more effective therapeutic strategies treating MI by MSCs in clinic.


Autoantibodies Affect Brain Density Reduction in Nonneuropsychiatric Systemic Lupus Erythematosus Patients.

  • Jian Xu‎ et al.
  • Journal of immunology research‎
  • 2015‎

This study explores the relationship between autoantibodies and brain density reduction in SLE patients without major neuropsychiatric manifestation (NPSLE). Ninety-five NPSLE patients without obvious cerebral deficits, as determined by conventional MRI, as well as 89 control subjects, underwent high-resolution structural MRI. Whole-brain density of grey matter (GMD) and white matter (WMD) were calculated for each individual, and correlations between the brain density, symptom severity, immunosuppressive agent (ISA), and autoantibody levels were assessed. The GMD and WMD of the SLE group decreased compared to controls. GMD was negatively associated with SLE activity. The WMD of patients who received ISA treatment were higher than that in the patients who did not. The WMD of patients with anticardiolipin (ACL) or anti-SSB/La antibodies was lower than in patients without these antibodies, while the GMD was lower in patients with anti-SM or anti-U1RNP antibodies. Thus, obvious brain atrophy can occur very early even before the development of significant symptoms and specific autoantibodies might contribute to the reduction of GMD or WMD in NPSLE patients. However, ISAs showed protective effects in minimizing GMD and WMD reduction. The presence of these specific autoantibodies might help identify early brain damage in NPSLE patients.


miR-221/222-Mediated Inhibition of Autophagy Promotes Dexamethasone Resistance in Multiple Myeloma.

  • Jian Xu‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2019‎

Inherent or acquired resistance to chemotherapeutic drugs is still an obstacle for the treatment of multiple myeloma (MM). MicroRNA dysregulation is related to the development of chemoresistance in cancers. However, its role in chemoresistance of MM is largely unknown. Here we demonstrated that miR-221/222 were upregulated in plasma cells from patients with MM, especially those with relapsed or refractory disease. Moreover, expression levels of miR-221/222 were inversely correlated with dexamethasone (Dex) sensitivity of human MM cell lines. Importantly, we found that Dex induced pro-death autophagy in MM cells and the inhibition of autophagy significantly decreased Dex-induced cell death. Mechanistically, autophagy-related gene 12 (ATG12) was identified as a novel target gene of miR-221/222, and miR-221/222 overexpression inhibited autophagy by directly targeting ATG12 and the p27kip (p27)-mammalian target of rapamycin (mTOR) pathway. Indeed, Dex treatment decreased the expression of miR-221/222, thereby activating the ATG12/p27-mTOR autophagy-regulatory axis and inducing cell death in Dex-sensitive MM cells. Furthermore, both in vitro and in vivo results showed that the inhibitions of miR-221/222 increased the expression of ATG12 and p27 and functionally induced extended autophagy and cell death of MM cells. In conclusion, our findings demonstrated the crucial role of the miR-221/222-ATG12/p27-mTOR autophagy-regulatory axis in Dex resistance of MM, and they suggest potential prediction and treatment strategies for glucocorticoid resistance.


Biosynthesis of Triacylglycerol Molecules with a Tailored PUFA Profile in Industrial Microalgae.

  • Yi Xin‎ et al.
  • Molecular plant‎
  • 2019‎

The composition of polyunsaturated fatty acids (PUFAs) in triacylglycerols (TAGs) is key to health benefits and for oil applications, yet the underlying genetic mechanism remains poorly understood. In this study, by in silico, ex vivo, and in vivo profiling of type-2 diacylglycerol acyltransferases (DGAT2s) in Nannochloropsis oceanica we revealed two novel PUFA-preferring enzymes that discriminate individual PUFA species in TAG assembly, with NoDGAT2J for linoleic acid (LA) and NoDGAT2K for eicosapentaenoic acid (EPA). The LA and EPA composition of TAG molecules is mediated in vivo via the functional partitioning between NoDGAT2J and 2K, both of which are localized in the chloroplast envelope. By modulating transcript abundance of the DGAT2s, an N. oceanica strain bank was created, where proportions of LA and EPA in TAG vary by 18.7-fold (between 0.21% and 3.92% dry weight) and 34.7-fold (between 0.09% and 3.12% dry weight), respectively. These findings lay the foundation for producing designer TAG molecules with tailored health benefits or for biofuel applications in industrial microalgae and higher-plant crops.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: