Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

Autophagy induced by taurolidine protects against polymicrobial sepsis by promoting both host resistance and disease tolerance.

  • Jie Huang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Sepsis, septic shock, and their sequelae are the leading causes of death in intensive care units, with limited therapeutic options. Disease resistance and tolerance are two evolutionarily conserved yet distinct defense strategies that protect the host against microbial infection. Here, we report that taurolidine administered at 6 h before septic challenge led to strong protection against polymicrobial sepsis by promoting both host resistance and disease tolerance characterized by accelerated bacterial clearance, ameliorated organ damage, and diminished vascular and gut permeability. Notably, taurolidine administered at 6 h after septic challenge also rescued mice from sepsis-associated lethality by enhancing disease tolerance to tissue and organ injury. Importantly, this in vivo protection afforded by taurolidine depends on an intact autophagy pathway, as taurolidine protected wild-type mice but was unable to rescue autophagy-deficient mice from microbial sepsis. In vitro, taurolidine induced light chain 3-associated phagocytosis in innate phagocytes and autophagy in vascular endothelium and gut epithelium, resulting in augmented bactericidal activity and enhanced cellular tolerance to endotoxin-induced damage in these cells. These results illustrate that taurolidine-induced autophagy augments both host resistance and disease tolerance to bacterial infection, thereby conferring protection against microbial sepsis.


Gene Network Analysis of Hepatocellular Carcinoma Identifies Modules Associated with Disease Progression, Survival, and Chemo Drug Resistance.

  • Hua Ye‎ et al.
  • International journal of general medicine‎
  • 2021‎

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. HCC transcriptome has been extensively studied; however, the progress in disease mechanisms, prognosis, and treatment is still slow.


Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome.

  • Bo Song‎ et al.
  • GigaScience‎
  • 2019‎

The African eggplant (Solanum aethiopicum) is a nutritious traditional vegetable used in many African countries, including Uganda and Nigeria. It is thought to have been domesticated in Africa from its wild relative, Solanum anguivi. S. aethiopicum has been routinely used as a source of disease resistance genes for several Solanaceae crops, including Solanum melongena. A lack of genomic resources has meant that breeding of S. aethiopicum has lagged behind other vegetable crops.


Dietary administration of Bacillus subtilis KC1 improves growth performance, immune response, heat stress tolerance, and disease resistance of broiler chickens.

  • Jian Wang‎ et al.
  • Poultry science‎
  • 2022‎

The purpose of the present study was to evaluate the probiotic properties of Bacillus subtilis KC1 as a feed additive in the poultry feed. Effects of the Bacillus subtilis supplementation on growth performance, heat-stress tolerance, resistance to Mycoplasma gallisepticum (MG) and Salmonella Pullorum challenge of broilers were determined. The protective effects of the Bacillus subtilis on liver function and immune response of broilers challenged with Aflatoxin B1 (AFB1) were also scrutinized. The results showed that the Bacillus subtilis supplementation could improve growth performance, increased body weight, relative weight of the immune organ and dressing percentage, and decrease feed conversion ratio. In addition, the Bacillus subtilis supplementation alleviated adverse effects caused by heat stress, MG, and Salmonella Pullorum challenge. Furthermore, the Bacillus subtilis supplementation resulted in improved liver function and enhanced immune response of broilers challenged with AFB1. In conclusion, these results suggested a tremendous potential of Bacillus subtilis KC1 as a feed additive in the poultry feed.


High-resolution mapping of SrTm4, a recessive resistance gene to wheat stem rust.

  • Hongna Li‎ et al.
  • TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik‎
  • 2023‎

The diploid wheat recessive stem rust resistance gene SrTm4 was fine-mapped to a 754-kb region on chromosome arm 2AmL and potential candidate genes were identified. Race Ug99 of Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem (or black) rust is one of the most serious threats to global wheat production. The identification, mapping, and deployment of effective stem rust resistance (Sr) genes are critical to reduce this threat. In this study, we generated SrTm4 monogenic lines and found that this gene confers resistance to North American and Chinese Pgt races. Using a large mapping population (9522 gametes), we mapped SrTm4 within a 0.06 cM interval flanked by marker loci CS4211 and 130K1519, which corresponds to a 1.0-Mb region in the Chinese Spring reference genome v2.1. A physical map of the SrTm4 region was constructed with 11 overlapping BACs from the resistant Triticum monococcum PI 306540. Comparison of the 754-kb physical map with the genomic sequence of Chinese Spring and a discontinuous BAC sequence of DV92 revealed a 593-kb chromosomal inversion in PI 306540. Within the candidate region, we identified an L-type lectin-domain containing receptor kinase (LLK1), which was disrupted by the proximal inversion breakpoint, as a potential candidate gene. Two diagnostic dominant markers were developed to detect the inversion breakpoints. In a survey of T. monococcum accessions, we identified 10 domesticated T. monococcum subsp. monococcum genotypes, mainly from the Balkans, carrying the inversion and showing similar mesothetic resistant infection types against Pgt races. The high-density map and tightly linked molecular markers developed in this study are useful tools to accelerate the deployment of SrTm4-mediated resistance in wheat breeding programs.


miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET.

  • Qing-Yong Chen‎ et al.
  • Oncotarget‎
  • 2016‎

MicroRNAs (miRNAs) play a critical role in drug resistance and epithelial-mesenchymal transition (EMT). The aims of this study were to explore the potential role of miR-206 in governing cisplatin resistance and EMT in lung cancer cells. We found that both lung adenocarcinoma A549 cisplatin-resistant cells (A549/DDP) and H1299 cisplatin-resistant cells (H1299/DDP) acquired mesenchymal features and were along with low expression of miR-206 and high migration and invasion abilities. Ectopic expression of miR-206 mimics inhibited cisplatin resistance, reversed the EMT phenotype, decreased the migration and invasion in these DDP-resistant cells. In contrast, miR-206 inhibitors increased cisplatin resistance, EMT, cell migration and invasion in non-DDP-resistant cells. Furthermore, we found that MET is the direct target of miR-206 in lung cancer cells. Knockdown of MET exhibited an EMT and DDP resistant inhibitory effect on DDP-resistant cells. Conversely, overexpression of MET in non-DDP- resistant cells produced a promoting effect on cell EMT and DDP resistance. In lung adenocarcinoma tissues, we demonstrated that low expression of miR-206 were also correlated with increased cisplatin resistance and MET expression. In addition, we revealed that miR-206 overexpression reduced cisplatin resistance and EMT in DDP-resistant cells, partly due to inactivation of MET/PI3K/AKT/mTOR signaling pathway, and subsequent downregulation of MDR1, ZEB1 and Snail expression. Finally, we found that miR-206 could also sensitize A549/DDP cells to cisplatin in mice model. Taken together, our study implied that activation of miR-206 or inactivation of its target gene pathway could serve as a novel approach to reverse cisplatin resistance in lung adenocarcinomas cells.


Identification of Natural Resistance Mediated by Recognition of Phytophthora infestans Effector Gene Avr3aEM in Potato.

  • Ahmed S M Elnahal‎ et al.
  • Frontiers in plant science‎
  • 2020‎

Late blight is considered the most renowned devastating potato disease worldwide. Resistance gene (R)-based resistance to late blight is the most effective method to inhibit infection by the causal agent Phytophthora infestans. However, the limited availability of resistant potato varieties and the rapid loss of R resistance, caused by P. infestans virulence variability, make disease control rely on fungicide application. We employed an Agrobacterium tumefaciens-mediated transient gene expression assay and effector biology approach to understand late blight resistance of Chinese varieties that showed years of promising field performance. We are particularly interested in PiAvr3aEM , the most common virulent allele of PiAvr3aKI that triggers a R3a-mediated hypersensitive response (HR) and late blight resistance. Through our significantly improved A. tumefaciens-mediated transient gene expression assay in potato using cultured seedlings, we characterized two dominant potato varieties, Qingshu9 and Longshu7, in China by transient expression of P. infestans effector genes. Transient expression of 10 known avirulence genes showed that PiAvr4 and PiAvr8 (PiAvrsmira2) could induce HR in Qingshu9, and PiAvrvnt1.1 in Longshu7, respectively. Our study also indicated that PiAvr3aEM is recognized by these two potato varieties, and is likely involved in their significant field performance of late blight resistance. The identification of natural resistance mediated by PiAvr3aEM recognition in Qingshu9 and Longshu7 will facilitate breeding for improved potato resistance against P. infestans.


Molecular characterization and analysis of high-level multidrug-resistance of Shigella flexneri serotype 4s strains from China.

  • Chaojie Yang‎ et al.
  • Scientific reports‎
  • 2016‎

To conduct the first comprehensive analysis of Shigella flexneri serotype 4s, a novel serotype found in 2010, we identified 24 serotype 4s isolates from 1973 shigellosis cases in China (2002-2014). The isolates were characterized by single nucleotide polymorphism (SNP) phylogenetic analysis, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) to determine their genetic relatedness, and analysed further for their antimicrobial susceptibilities and antimicrobial resistance determinants. The PFGE and SNP phylogenetic analyses suggest that S. flexneri serotype 4s strains are derived from multiple serotypes, including two predominant serotypes in China: serotype X variant and serotype II. Three new sequence types were identified by MLST. All isolates were resistant to ticarcillin, ampicillin and tetracycline, with high-level resistance to third-generation cephalosporins. Notably, all the isolates were multidrug resistant (MDR), with the highest levels of resistance observed for eight antimicrobials classes. Most isolates contain various antimicrobial resistance determinants. In conclusion, we found that serotype 4s isolates have multiple evolutionary sources, diverse biochemical characteristics and genomes, and highly prevalent multidrug resistance and antimicrobial-resistant determinants. With few clinical treatment options, continuous monitoring and timely intervention against this emerging MDR serotype is essential. The possibility that serotype 4s will become the next predominant serotype exists.


Oridonin prevents insulin resistance-mediated cognitive disorder through PTEN/Akt pathway and autophagy in minimal hepatic encephalopathy.

  • Fangfang Wen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Minimal hepatic encephalopathy (MHE) was characterized for cognitive dysfunction. Insulin resistance (IR) has been identified to be correlated with the pathogenesis of MHE. Oridonin (Ori) is an active terpenoid, which has been reported to rescue synaptic loss and restore insulin sensitivity. In this study, we found that intraperitoneal injection of Ori rescued IR, reduced the autophagosome formation and synaptic loss and improved cognitive dysfunction in MHE rats. Moreover, in insulin-resistant PC12 cells and N2a cells, we found that Ori blocked IR-induced synaptic deficits via the down-regulation of PTEN, the phosphorylation of Akt and the inhibition of autophagy. Taken together, these results suggested that Ori displays therapeutic efficacy towards memory deficits via improvement of IR in MHE and represents a novel bioactive therapeutic agent for treating MHE.


Agrobacterium tumefaciens-mediated transformation of a hevein-like gene into asparagus leads to stem wilt resistance.

  • Helong Chen‎ et al.
  • PloS one‎
  • 2019‎

Asparagus stem wilt, is a significant and devastating disease, typically leading to extensive economic losses in the asparagus industry. To obtain transgenic plants resistant to stem wilt, the hevein-like gene, providing broad spectrum bacterial resistance was inserted into the asparagus genome through Agrobacterium tumefaciens-mediated transformation. The optimal genetic transformation system for asparagus was as follows: pre-culture of embryos for 2 days, inoculation using a bacterial titre of OD600 = 0.6, infection time 10 min and co-culturing for 4 days using an Acetosyringone concentration of 200 μmol/L. Highest transformation frequencies reached 21% and ten transgenic asparagus seedlings carrying the hevein-like gene were identified by polymerase chain reaction. Moreover, integration of the hevein-like gene in the T1 generation of transgenic plants was confirmed by southern blot hybridization. Analysis showed that resistance to stem wilt was enhanced significantly in the transgenic plants, in comparison to non- transgenic plants. The results provide additional data for genetic improvement and are of importance for the development of new disease-resistant asparagus varieties.


COVID-19 induces new-onset insulin resistance and lipid metabolic dysregulation via regulation of secreted metabolic factors.

  • Xi He‎ et al.
  • Signal transduction and targeted therapy‎
  • 2021‎

Abnormal glucose and lipid metabolism in COVID-19 patients were recently reported with unclear mechanism. In this study, we retrospectively investigated a cohort of COVID-19 patients without pre-existing metabolic-related diseases, and found new-onset insulin resistance, hyperglycemia, and decreased HDL-C in these patients. Mechanistically, SARS-CoV-2 infection increased the expression of RE1-silencing transcription factor (REST), which modulated the expression of secreted metabolic factors including myeloperoxidase, apelin, and myostatin at the transcriptional level, resulting in the perturbation of glucose and lipid metabolism. Furthermore, several lipids, including (±)5-HETE, (±)12-HETE, propionic acid, and isobutyric acid were identified as the potential biomarkers of COVID-19-induced metabolic dysregulation, especially in insulin resistance. Taken together, our study revealed insulin resistance as the direct cause of hyperglycemia upon COVID-19, and further illustrated the underlying mechanisms, providing potential therapeutic targets for COVID-19-induced metabolic complications.


Activated amino acid response pathway generates apatinib resistance by reprograming glutamine metabolism in non-small-cell lung cancer.

  • Xiaoshu Zhou‎ et al.
  • Cell death & disease‎
  • 2022‎

The efficacy of apatinib has been confirmed in the treatment of solid tumors, including non-small-cell lung cancer (NSCLC). However, the direct functional mechanisms of tumor lethality mediated by apatinib and the precise mechanisms of drug resistance are largely unknown. In this study, we demonstrated that apatinib could reprogram glutamine metabolism in human NSCLC via a mechanism involved in amino acid metabolic imbalances. Apatinib repressed the expression of GLS1, the initial and rate-limiting enzyme of glutamine catabolism. However, the broken metabolic balance led to the activation of the amino acid response (AAR) pathway, known as the GCN2/eIF2α/ATF4 pathway. Moreover, activation of ATF4 was responsible for the induction of SLC1A5 and ASNS, which promoted the consumption and metabolization of glutamine. Interestingly, the combination of apatinib and ATF4 silencing abolished glutamine metabolism in NSCLC cells. Moreover, knockdown of ATF4 enhanced the antitumor effect of apatinib both in vitro and in vivo. In summary, this study showed that apatinib could reprogram glutamine metabolism through the activation of the AAR pathway in human NSCLC cells and indicated that targeting ATF4 is a potential therapeutic strategy for relieving apatinib resistance.


Conjunctive Analysis of BSA-Seq and SSR Markers Unveil the Candidate Genes for Resistance to Rice False Smut.

  • Rongtao Fu‎ et al.
  • Biomolecules‎
  • 2024‎

Rice false smut (RFS) caused by the fungus Ustilaginoidea virens (Cook) leads to serious yield losses in rice. Identification of the gene or quantitative trait loci (QTLs) is crucial to resistance breeding and mitigation of RFS damage. In this study, we crossed a resistant variety, IR77298-14-1-2::IRGC117374-1, with a susceptible indica cultivar, 9311, and evaluated recombinant inbred lines in a greenhouse. The genetic analysis showed that the RFS resistance of IR77298-14-1-2::IRGC117374-1 was controlled by multiple recessive loci. We identified a novel QTL, qRFS12.01, for RFS resistance in IR77298-14-1-2::IRGC117374-1 by combining bulked segregant analysis with whole genome resequencing (BSA-seq) and simple sequence repeat (SSR) marker mapping approaches. The phenotypic effect of qRFS12.01 on RFS resistance reached 28.74%, suggesting that SSR markers linked to qRFS12.01 are valuable for marker-assisted breeding of RFS resistance in rice. The prediction of putative candidate genes within qRFS12.01 revealed five disease resistance proteins containing NB-ARC domains. In conclusion, our findings provide a new rice chromosome region carrying genes/QTLs for resistance to RFS.


Genetic association between the Pfk13 gene mutation and artemisinin resistance phenotype in Plasmodium falciparum isolates from Yunnan Province, China.

  • Ying Dong‎ et al.
  • Malaria journal‎
  • 2018‎

The problem of anti-malarial drug resistance is a long-term challenge faced by malaria control in Yunnan Province. Recently, the detection rates of chloroquine-resistant molecular markers (Plasmodium falciparum chloroquine resistant transporter, Pfcrt) and artemisinin-resistant molecular markers (P. falciparum kelch13 gene, ork13) were 85% and 35%, respectively. To understand the association of k13 gene mutation with artemisinin resistance in falciparum malaria cases, the difference in k13 gene differentiation between two populations and artemisinin resistance phenotype on falciparum malaria cases in Myanmar were analysed in this study.


Transcriptional profiling provides new insights into the role of nitric oxide in enhancing Ganoderma oregonense resistance to heat stress.

  • Cheng Chen‎ et al.
  • Scientific reports‎
  • 2017‎

Ganoderma is well known for its use in traditional Chinese medicine and is widely cultivated in China, Korea, and Japan. Increased temperatures associated with global warming are negatively influencing the growth and development of Ganoderma. Nitric oxide is reported to play an important role in alleviating fungal heat stress (HS). However, the transcriptional profiling of Ganoderma oregonense in response to HS, as well as the transcriptional response regulated by NO to cope with HS has not been reported. We used RNA-Seq technology to generate large-scale transcriptome data from G. oregonense mycelia subjected to HS (32 °C) and exposed to concentrations of exogenous NO. The results showed that heat shock proteins (HSPs), "probable stress-induced proteins", and unigenes involved in "D-amino-acid oxidase activity" and "oxidoreductase activity" were significantly up-regulated in G. oregonense subjected to HS (P < 0.05). The significantly up-regulated HSPs, "monooxygenases", "alcohol dehydrogenase", and "FAD/NAD(P)-binding domain-containing proteins" (P < 0.05) regulated by exogenous NO may play important roles in the enhanced HS tolerance of G. oregonense. These results provide insights into the transcriptional response of G. oregonense to HS and the mechanism by which NO enhances the HS tolerance of fungi at the gene expression level.


Novel Genomic Regions of Fusarium Wilt Resistance in Bottle Gourd [Lagenaria siceraria (Mol.) Standl.] Discovered in Genome-Wide Association Study.

  • Yanwei Li‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Fusarium wilt (FW) is a typical soil-borne disease that seriously affects the yield and fruit quality of bottle gourd. Thus, to improve resistance to FW in bottle gourd, the genetic mechanism underlying FW resistance needs to be explored. In this study, we performed a genome-wide association study (GWAS) based on 5,330 single-nucleotide polymorphisms (SNPs) and 89 bottle gourd accessions. The GWAS results revealed a total of 10 SNPs (P ≤ 0.01, -log10 P ≥ 2.0) significantly associated with FW resistance that were detected in at least two environments (2019DI, 2020DI, and the average across the 2 years); these SNPs were located on chromosomes 1, 2, 3, 4, 8, and 9. Linkage disequilibrium (LD) block structure analysis predicted three potential candidate genes for FW resistance. Genes HG_GLEAN_10001030 and HG_GLEAN_10001042 were within the range of the mean LD block of the marker BGReSe_14202; gene HG_GLEAN_10011803 was 280 kb upstream of the marker BGReSe_00818. Real-time quantitative PCR (qRT-PCR) analysis showed that HG_GLEAN_10011803 was significantly up-regulated in FW-infected plants of YD-4, Yin-10, and Hanbi; HG_GLEAN_10001030 and HG_GLEAN_10001042 were specifically up-regulated in FW-infected plants of YD-4. Therefore, gene HG_GLEAN_10011803 is likely the major effect candidate gene for resistance against FW in bottle gourd. This work provides scientific evidence for the exploration of candidate gene and development of functional markers in FW-resistant bottle gourd breeding programs.


Genome-Wide Association Mapping and Gene Expression Analysis Reveal the Negative Role of OsMYB21 in Regulating Bacterial Blight Resistance in Rice.

  • Wu Yang‎ et al.
  • Rice (New York, N.Y.)‎
  • 2021‎

Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases in rice all over the world. Due to the diversity and rapid evolution of Xoo, identification and use of the non-race specific quantitative resistance QTLs has been considered the preferred strategy for effective control of this disease. Although numerous QTLs for BB resistance have been identified, they haven't been effectively used for improvement of BB resistance in rice due to their small effects and lack of knowledge on the function of genes underlying the QTLs.


Effects of Lactobacillus salivarius supplementation on the growth performance, liver function, meat quality, immune responses and Salmonella Pullorum infection resistance of broilers challenged with Aflatoxin B1.

  • Xueping Chen‎ et al.
  • Poultry science‎
  • 2022‎

Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins. It has been reported that dietary exposure to AFB1 is related to the low growth performance, immunosuppression, and high susceptibility to infectious diseases of chickens. The aim of the present study was to evaluate the protective effects of Lactobacillus salivarius on broiler chickens challenged with AFB1. First, AFB1 degradation ability of Lactobacillus salivarius was measured by a high-performance liquid chromatography (HPLC) method. Then, the Arbor Acres broiler chickens were randomly assigned to experimental groups. The effects of Lactobacillus salivarius supplementation on the growth performance, liver function, and meat quality were measured, and immune response was also determined after vaccination with attenuated infectious bursal disease virus (IBDV) vaccine of broilers challenged with AFB1. Besides, resistance to Salmonella Pullorum infection along with AFB1 exposure was determined in broilers. The results showed that Lactobacillus salivarius could effectively degrade AFB1. Lactobacillus salivarius supplementation improved growth performance, liver function, and meat quality of broilers challenged with AFB1. In addition, Lactobacillus salivarius supplementation resulted in enhanced specific antibody and IFN-γ production, and lymphocyte proliferation in broilers challenged with AFB1 after IBDV vaccine immunization. Furthermore, Lactobacillus salivarius supplementation enhanced Salmonella Pullorum infection resistance in broilers challenged with AFB1. Our results revealed a tremendous potential of Lactobacillus salivarius as feed additive to degrading AFB1 and increasing broilers production performance in poultry production.


Antagonistic Effects Of Baicalin On Mycoplasma gallisepticum-Induced Inflammation And Apoptosis By Restoring Energy Metabolism In The Chicken Lungs.

  • Muhammad Ishfaq‎ et al.
  • Infection and drug resistance‎
  • 2019‎

Baicalin possesses potential anti-inflammatory, anti-tumor and anti-oxidant activities. In the present study, we attempted to investigate the preventive effects of baicalin against Mycoplasma gallisepticum (MG)-induced inflammation, apoptosis and energy metabolism dysfunction in chicken lungs.


miR-1-3p and miR-206 sensitizes HGF-induced gefitinib-resistant human lung cancer cells through inhibition of c-Met signalling and EMT.

  • Demin Jiao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Hepatocyte growth factor (HGF) overexpression is an important mechanism in acquired epidermal growth factor receptor (EGFR) kinase inhibitor gefitinib resistance in lung cancers with EGFR activating mutations. MiR-1-3p and miR-206 act as suppressors in lung cancer proliferation and metastasis. However, whether miR-1-3p and miR-206 can overcome HGF-induced gefitinib resistance in EGFR mutant lung cancer is not clear. In this study, we showed that miR-1-3p and miR-206 restored the sensitivities of lung cancer cells PC-9 and HCC-827 to gefitinib in present of HGF. For the mechanisms, we demonstrated that both miR-1-3p and miR-206 directly target HGF receptor c-Met in lung cancer. Knockdown of c-Met mimicked the effects of miR-1-3p and miR-206 transfections Meanwhile, c-Met overexpression attenuated the effects of miR-1-3p and miR-206 in HGF-induced gefitinib resistance of lung cancers. Furthermore, we showed that miR-1-3p and miR-206 inhibited c-Met downstream Akt and Erk pathway and blocked HGF-induced epithelial-mesenchymal transition (EMT). Finally, we demonstrated that miR-1-3p and miR-206 can increase gefitinib sensitivity in xenograft mouse models in vivo. Our study for the first time indicated the new function of miR-1-3p and miR-206 in overcoming HGF-induced gefitinib resistance in EGFR mutant lung cancer cell.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: