Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Structural basis of the junctional anchorage of the cerebral cavernous malformations complex.

  • Alexandre R Gingras‎ et al.
  • The Journal of cell biology‎
  • 2012‎

The products of genes that cause cerebral cavernous malformations (CCM1/KRIT1, CCM2, and CCM3) physically interact. CCM1/KRIT1 links this complex to endothelial cell (EC) junctions and maintains junctional integrity in part by inhibiting RhoA. Heart of glass (HEG1), a transmembrane protein, associates with KRIT1. In this paper, we show that the KRIT1 band 4.1, ezrin, radixin, and moesin (FERM) domain bound the HEG1 C terminus (K(d) = 1.2 µM) and solved the structure of this assembly. The KRIT1 F1 and F3 subdomain interface formed a hydrophobic groove that binds HEG1(Tyr(1,380)-Phe(1,381)), thus defining a new mode of FERM domain-membrane protein interaction. This structure enabled design of KRIT1(L717,721A), which exhibited a >100-fold reduction in HEG1 affinity. Although well folded and expressed, KRIT1(L717,721A) failed to target to EC junctions or complement the effects of KRIT1 depletion on zebrafish cardiovascular development or Rho kinase activation in EC. These data establish that this novel FERM-membrane protein interaction anchors CCM1/KRIT1 at EC junctions to support cardiovascular development.


Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway.

  • Benjamin Kleaveland‎ et al.
  • Nature medicine‎
  • 2009‎

Cerebral cavernous malformations (CCMs) are human vascular malformations caused by mutations in three genes of unknown function: KRIT1, CCM2 and PDCD10. Here we show that the heart of glass (HEG1) receptor, which in zebrafish has been linked to ccm gene function, is selectively expressed in endothelial cells. Heg1(-/-) mice showed defective integrity of the heart, blood vessels and lymphatic vessels. Heg1(-/-); Ccm2(lacZ/+) and Ccm2(lacZ/lacZ) mice had more severe cardiovascular defects and died early in development owing to a failure of nascent endothelial cells to associate into patent vessels. This endothelial cell phenotype was shared by zebrafish embryos deficient in heg, krit1 or ccm2 and reproduced in CCM2-deficient human endothelial cells in vitro. Defects in the hearts of zebrafish lacking heg or ccm2, in the aortas of early mouse embryos lacking CCM2 and in the lymphatic vessels of neonatal mice lacking HEG1 were associated with abnormal endothelial cell junctions like those observed in human CCMs. Biochemical and cellular imaging analyses identified a cell-autonomous pathway in which the HEG1 receptor couples to KRIT1 at these cell junctions. This study identifies HEG1-CCM protein signaling as a crucial regulator of heart and vessel formation and integrity.


Differentiation of vascular myofibroblasts induced by transforming growth factor-beta1 requires the involvement of protein kinase Calpha.

  • Ping J Gao‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2003‎

In response to vascular injury, adventitial fibroblasts can modulate their phenotype to myofibroblasts, cells that participate in arterial remodeling. However, the signaling mechanisms underlying the vascular myofibroblast differentiation remain unknown. Since protein kinase C (PKC) is a key enzyme for cell differentiation, we examined whether PKC isoforms were involved in the vascular myofibroblast differentiation. The association between PKCalpha and myofibroblast differentiation was investigated in cultured rat aortic fibroblasts treated with transforming growth factor-beta1 (TGFbeta1). Confocal immunofluorescence microscopy indicated that fibroblasts expressed alpha-smooth muscle actin (alpha-SM actin) after TGFbeta1 treatment. Moreover, TGFbeta1 stimulation increased both PKCalpha mRNA expression (measured by real-time quantitative RT-PCR) and PKC activity (determined by histone-like pseudosubstrate phosphorylation) in adventitial fibroblasts. Western blot analysis indicated that PKCalpha protein expression was higher in TGFbeta1-treated fibroblasts than in untreated cells. TGFbeta1-induced expression of alpha-SM actin was inhibited in a dose-dependent manner by treating cells with a PKC inhibitor, calphostin C, and was abolished by depleting PKCalpha with antisense PKCalpha oligodeoxynucleotides. Our results demonstrate that TGFbeta1 induces adventitial myofibroblast differentiation via a PKCalpha-dependent process.


Heart of glass anchors Rasip1 at endothelial cell-cell junctions to support vascular integrity.

  • Bart-Jan de Kreuk‎ et al.
  • eLife‎
  • 2016‎

Heart of Glass (HEG1), a transmembrane receptor, and Rasip1, an endothelial-specific Rap1-binding protein, are both essential for cardiovascular development. Here we performed a proteomic screen for novel HEG1 interactors and report that HEG1 binds directly to Rasip1. Rasip1 localizes to forming endothelial cell (EC) cell-cell junctions and silencing HEG1 prevents this localization. Conversely, mitochondria-targeted HEG1 relocalizes Rasip1 to mitochondria in cells. The Rasip1-binding site in HEG1 contains a 9 residue sequence, deletion of which abrogates HEG1's ability to recruit Rasip1. HEG1 binds to a central region of Rasip1 and deletion of this domain eliminates Rasip1's ability to bind HEG1, to translocate to EC junctions, to inhibit ROCK activity, and to maintain EC junctional integrity. These studies establish that the binding of HEG1 to Rasip1 mediates Rap1-dependent recruitment of Rasip1 to and stabilization of EC cell-cell junctions.


A mechanism of Rap1-induced stabilization of endothelial cell--cell junctions.

  • Jian J Liu‎ et al.
  • Molecular biology of the cell‎
  • 2011‎

Activation of Rap1 small GTPases stabilizes cell--cell junctions, and this activity requires Krev Interaction Trapped gene 1 (KRIT1). Loss of KRIT1 disrupts cardiovascular development and causes autosomal dominant familial cerebral cavernous malformations. Here we report that native KRIT1 protein binds the effector loop of Rap1A but not H-Ras in a GTP-dependent manner, establishing that it is an authentic Rap1-specific effector. By modeling the KRIT1-Rap1 interface we designed a well-folded KRIT1 mutant that exhibited a ~40-fold-reduced affinity for Rap1A and maintained other KRIT1-binding functions. Direct binding of KRIT1 to Rap1 stabilized endothelial cell-cell junctions in vitro and was required for cardiovascular development in vivo. Mechanistically, Rap1 binding released KRIT1 from microtubules, enabling it to locate to cell--cell junctions, where it suppressed Rho kinase signaling and stabilized the junctions. These studies establish that the direct physical interaction of Rap1 with KRIT1 enables the translocation of microtubule-sequestered KRIT1 to junctions, thereby supporting junctional integrity and cardiovascular development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: