Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Atmospheric Precipitations, Hailstone and Rainwater, as a Novel Source of Streptomyces Producing Bioactive Natural Products.

  • Aida Sarmiento-Vizcaíno‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

A cultivation-dependent approach revealed that highly diverse populations of Streptomyces were present in atmospheric precipitations from a hailstorm event sampled in February 2016 in the Cantabrian Sea coast, North of Spain. A total of 29 bioactive Streptomyces strains isolated from small samples of hailstone and rainwater, collected from this hailstorm event, were studied here. Taxonomic identification by 16S rRNA sequencing revealed more than 20 different Streptomyces species, with their closest homologs displaying mainly oceanic but also terrestrial origins. Backward trajectory analysis revealed that the air-mass sources of the hailstorm event, with North Western winds, were originated in the Arctic Ocean (West Greenland and North Iceland) and Canada (Labrador), depending on the altitude. After traveling across the North Atlantic Ocean during 4 days the air mass reached Europe and precipitated as hailstone and rain water at the sampling place in Spain. The finding of Streptomyces species able to survive and disperse through the atmosphere increases our knowledge of the biogeography of genus Streptomyces on Earth, and reinforces our previous dispersion model, suggesting a generalized feature for the genus which could have been essential in his evolution. This unique atmospheric-derived Streptomyces collection was screened for production of bioactive secondary metabolites. Analyses of isolates ethyl acetate extracts by LC-UV-MS and further database comparison revealed an extraordinary diversity of bioactive natural products. One hundred molecules were identified, mostly displaying contrasted antibiotic and antitumor/cytotoxic activities, but also antiparasitic, antiviral, anti-inflammatory, neuroprotector, and insecticide properties. More interestingly, 38 molecules not identified in natural products databases might represent new natural products. Our results revealed for the first time an extraordinary diversity of Streptomyces species in the atmosphere able to produce an extraordinary repertoire of bioactive molecules, thus providing a very promising source for the discovery of novel pharmaceutical natural products.


New Insights into the Biosynthesis Pathway of Polyketide Alkaloid Argimycins P in Streptomyces argillaceus.

  • Suhui Ye‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Argimycins P are a recently identified family of polyketide alkaloids encoded by the cryptic gene cluster arp of Streptomyces argillaceus. These compounds contain either a piperideine ring, or a piperidine ring which may be fused to a five membered ring, and a polyene side chain, which is bound in some cases to an N-acetylcysteine moiety. The arp cluster consists of 11 genes coding for structural proteins, two for regulatory proteins and one for a hypothetical protein. Herein, we have characterized the post-piperideine ring biosynthesis steps of argimycins P through the generation of mutants in arp genes, the identification and characterization of compounds accumulated by those mutants, and cross-feeding experiments between mutants. Based in these results, a biosynthesis pathway is proposed assigning roles to every arp gene product. The regulation of the arp cluster is also addressed by inactivating/overexpressing the positive SARP-like arpRI and the negative TetR-like arpRII transcriptional regulators and determining the effect on argimycins P production, and through gene expression analyses (reverse transcription PCR and quantitative real-time PCR) of arp genes in regulatory mutants in comparison to the wild type strain. These findings will contribute to deepen the knowledge on the biosynthesis of piperidine-containing polyketides and provide tools that can be used to generate new analogs by genetic engineering and/or biocatalysis.


The XRE-DUF397 Protein Pair, Scr1 and Scr2, Acts as a Strong Positive Regulator of Antibiotic Production in Streptomyces.

  • Ramón I Santamaría‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

The xenobiotic response element (XRE) transcription factors belong to a regulator family frequently found in Streptomyces that are often followed by small proteins with a DUF397 domain. In fact, the pair XRE-DUF397 has been proposed to comprise toxin-antitoxin (TA) type II systems. In this work, we demonstrate that one of these putative TA-systems, encoded by the genes SCO4441 and SCO4442 of Streptomyces coelicolor, and denominated Scr1/Scr2 (which stands for S. c oelicolor r egulator), does not behave as a toxin-antitoxin system under the conditions used as was originally expected. Instead the pair Scr1/Scr2 acts as a strong positive regulator of endogenous antibiotic production in S. coelicolor. The analysis of the 19 Streptomyces strains tested determined that overexpression of the pair Scr1/Scr2 drastically induces the production of antibiotics not only in S. coelicolor, but also in Streptomyces lividans, Streptomyces peucetius, Streptomyces steffisburgensis and Streptomyces sp. CA-240608. Our work also shows that Scr1 needs Scr2 to exert positive regulation on antibiotic production.


Identification by Genome Mining of a Type I Polyketide Gene Cluster from Streptomyces argillaceus Involved in the Biosynthesis of Pyridine and Piperidine Alkaloids Argimycins P.

  • Suhui Ye‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Genome mining of the mithramycin producer Streptomyces argillaceus ATCC 12956 revealed 31 gene clusters for the biosynthesis of secondary metabolites, and allowed to predict the encoded products for 11 of these clusters. Cluster 18 (renamed cluster arp) corresponded to a type I polyketide gene cluster related to the previously described coelimycin P1 and streptazone gene clusters. The arp cluster consists of fourteen genes, including genes coding for putative regulatory proteins (a SARP-like transcriptional activator and a TetR-like transcriptional repressor), genes coding for structural proteins (three PKSs, one aminotransferase, two dehydrogenases, two cyclases, one imine reductase, a type II thioesterase, and a flavin reductase), and one gene coding for a hypothetical protein. Identification of encoded compounds by this cluster was achieved by combining several strategies: (i) inactivation of the type I PKS gene arpPIII; (ii) inactivation of the putative TetR-transcriptional repressor arpRII; (iii) cultivation of strains in different production media; and (iv) using engineered strains with higher intracellular concentration of malonyl-CoA. This has allowed identifying six new alkaloid compounds named argimycins P, which were purified and structurally characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. Some argimycins P showed a piperidine ring with a polyene side chain (argimycin PIX); others contain also a fused five-membered ring (argimycins PIV-PVI). Argimycins PI-PII showed a pyridine ring instead, and an additional N-acetylcysteinyl moiety. These compounds seem to play a negative role in growth and colony differentiation in S. argillaceus, and some of them show weak antibiotic activity. A pathway for the biosynthesis of argimycins P is proposed, based on the analysis of proposed enzyme functions and on the structure of compounds encoded by the arp cluster.


Bioactive Natural Products in Actinobacteria Isolated in Rainwater From Storm Clouds Transported by Western Winds in Spain.

  • Aida Sarmiento-Vizcaíno‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Actinobacteria are the main producers of bioactive natural products essential for human health. Although their diversity in the atmosphere remains largely unexplored, using a multidisciplinary approach, we studied here 27 antibiotic producing Actinobacteria strains, isolated from 13 different precipitation events at three locations in Northern and Southern Spain. Rain samples were collected throughout 2013-2016, from events with prevailing Western winds. NOAA HYSPLIT meteorological analyses were used to estimate the sources and trajectories of the air-mass that caused the rainfall events. Five-day backward air masses trajectories of the diverse events reveals a main oceanic source from the North Atlantic Ocean, and in some events long range transport from the Pacific and the Arctic Oceans; terrestrial sources from continental North America and Western Europe were also estimated. Different strains were isolated depending on the precipitation event and the latitude of the sampling site. Taxonomic identification by 16S rRNA sequencing and phylogenetic analysis revealed these strains to belong to two Actinobacteria genera. Most of the isolates belong to the genus Streptomyces, thus increasing the number of species of this genus isolated from the atmosphere. Furthermore, five strains belonging to the rare Actinobacterial genus Nocardiopsis were isolated in some events. These results reinforce our previous Streptomyces atmospheric dispersion model, which we extend herein to the genus Nocardiopsis. Production of bioactive secondary metabolites was analyzed by LC-UV-MS. Comparative analyses of Streptomyces and Nocardiopsis metabolites with natural product databases led to the identification of multiple, chemically diverse, compounds. Among bioactive natural products identified 55% are antibiotics, both antibacterial and antifungal, and 23% have antitumor or cytotoxic properties; also compounds with antiparasitic, anti-inflammatory, immunosuppressive, antiviral, insecticidal, neuroprotective, anti-arthritic activities were found. Our findings suggest that over time, through samples collected from different precipitation events, and space, in different sampling places, we can have access to a great diversity of Actinobacteria producing an extraordinary reservoir of bioactive natural products, from remote and very distant origins, thus highlighting the atmosphere as a contrasted source for the discovery of novel compounds of relevance in medicine and biotechnology.


Searching for Glycosylated Natural Products in Actinomycetes and Identification of Novel Macrolactams and Angucyclines.

  • Mónica G Malmierca‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Many bioactive natural products are glycosylated compounds in which the sugar components usually participate in interaction and molecular recognition of the cellular target. Therefore, the presence of sugar moieties is important, in some cases essential, for bioactivity. Searching for novel glycosylated bioactive compounds is an important aim in the field of the research for natural products from actinomycetes. A great majority of these sugar moieties belong to the 6-deoxyhexoses and share two common biosynthetic steps catalyzed by a NDP-D-glucose synthase (GS) and a NDP-D-glucose 4,6-dehydratase (DH). Based on this fact, seventy one Streptomyces strains isolated from the integument of ants of the Tribe Attini were screened for the presence of biosynthetic gene clusters (BGCs) for glycosylated compounds. Total DNAs were analyzed by PCR amplification using oligo primers for GSs and DHs and also for a NDP-D-glucose-2,3-dehydratases. Amplicons were used in gene disruption experiments to generate non-producing mutants in the corresponding clusters. Eleven mutants were obtained and comparative dereplication analyses between the wild type strains and the corresponding mutants allowed in some cases the identification of the compound coded by the corresponding cluster (lobophorins, vicenistatin, chromomycins and benzanthrins) and that of two novel macrolactams (sipanmycin A and B). Several strains did not show UPLC differential peaks between the wild type strain and mutant profiles. However, after genome sequencing of these strains, the activation of the expression of two clusters was achieved by using nutritional and genetic approaches leading to the identification of compounds of the cervimycins family and two novel members of the warkmycins family. Our work defines a useful strategy for the identification new glycosylated compounds by a combination of genome mining, gene inactivation experiments and the activation of silent biosynthetic clusters in Streptomyces strains.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: