Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Distribution of neuropeptide FF-like immunoreactivity in the brain of the lizard Gekko gecko and its relation to catecholaminergic structures.

  • Wilhelmus J A J Smeets‎ et al.
  • The Journal of comparative neurology‎
  • 2006‎

The present study provides a detailed description of the distribution of neuropeptide FF (NPFF)-like immunoreactivity in the brain of the lizard Gekko gecko. NPFF is found to be involved in nociception, cardiovascular regulation, and endocrine function. Because of its known relationship with catecholamines in mammals, double staining with tyrosine hydroxylase (TH) antibodies was used to corroborate this for reptiles. The present study revealed that NPFF-like-immunoreactive (NPFF-ir) cells and fibers were widely distributed throughout the brain. Major NPFF-ir cell groups were observed in the diagonal band nucleus of Broca, hypothalamus, and dorsal horn of the spinal cord. Additional cells were found in the anterior olfactory nucleus, lateral and dorsal cortices, dorsolateral septum, and diencephalic intergeniculate leaflet formation. Dense plexuses of NPFF-ir fibers were identified in the diagonal band nucleus of Broca, septum, preoptic and hypothalamic areas, isthmic region, ventrolateral tegmentum, solitary tract nucleus, and dorsolateral funiculus of the spinal cord. Extensive fiber staining also occurred in the nucleus accumbens and the midbrain tectum. Although an intimate relationship between NPFF-ir and TH-ir structures was obvious at many places in the brain, colocalization of these two substances was not observed. In conclusion, the distribution of NPFF in the brain of Gekko shares more features with anamniotes in terms of number of cell groups, more elaborate networks of fibers, and lack of colocalization with catecholamines than with mammals, suggesting a decrease in the distribution of this peptide in the latter vertebrate group.


Pattern of nitrergic cells and fibers organization in the central nervous system of the Australian lungfish, Neoceratodus forsteri (Sarcopterygii: Dipnoi).

  • Jesús M López‎ et al.
  • The Journal of comparative neurology‎
  • 2019‎

The Australian lungfish Neoceratodus forsteri is the only extant species of the order Ceratodontiformes, which retained most of the primitive features of ancient lobe finned-fishes. Lungfishes are the closest living relatives of land vertebrates and their study is important for deducing the neural traits that were conserved, modified, or lost with the transition from fishes to land vertebrates. We have investigated the nitrergic system with neural nitric oxide synthase (NOS) immunohistochemistry and NADPH-diaphorase (NADPH-d) histochemistry, which yielded almost identical results except for the primary olfactory projections and the terminal and preoptic nerve fibers labeled only for NADPH-d. Combined immunohistochemistry was used for simultaneous detection of NOS with catecholaminergic, cholinergic, and serotonergic structures, aiming to establish accurately the localization of the nitrergic elements and to assess possible interactions between these neurotransmitter systems. The results demonstrated abundant nitrergic cells in the basal ganglia, amygdaloid complex, preoptic area, basal hypothalamus, mesencephalic tectum and tegmentum, laterodorsal tegmental nucleus, reticular formation, spinal cord, and retina. In addition, low numbers of nitrergic cells were observed in the olfactory bulb, all pallial divisions, lateral septum, suprachiasmatic nucleus, prethalamic and thalamic areas, posterior tubercle, pretectum, torus semicircularis, cerebellar nucleus, interpeduncular nucleus, the medial octavolateral nucleus, nucleus of the solitary tract, and the dorsal column nucleus. Colocalization of NOS and tyrosine hydroxylase was observed in numerous cells of the ventral tegmental area/substantia nigra complex. Comparison with other vertebrates, using a neuromeric analysis, reveals that the nitrergic system of Neoceratodus shares many neuroanatomical features with tetrapods and particularly with amphibians.


Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates.

  • Jesús M López‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

Lungfishes are a group of sarcopterygian fishes currently considered the closest living relatives of tetrapods, and represent an interesting group for the study of evolutionary traits in the transition from fishes to tetrapods. Catecholaminergic systems in the brain are among the most carefully analyzed neurotransmitter systems in the brain of most vertebrate groups. Their organization shows major shared characteristics, although traits particular to each vertebrate class have also been found, primarily between anamniotes and amniotes. Given the relevance of lungfishes in evolutionary terms, the present study provides the first comprehensive and detailed map of the catecholaminergic structures in the brain of two representative species of lungfishes, an African lungfish (Protopterus dolloi) and the Australian lungfish (Neoceratodus forsteri), as revealed by immunohistochemistry. Distinct groups of catecholaminergic cells were observed in the olfactory bulb, pallium, and preoptic area of the telencephalon, and the subpallium is devoid of these cells. Hypothalamic and diencephalic groups were detected and, in particular, the dopaminergic nucleus of the periventricular organ was evidenced with dopamine antibodies but not with anti-tyrosine hydroxylase. A well developed mesostriatal system was revealed formed by conspicuous groups of dopamine cells in the midbrain tegmentum and profuse innervation of the subpallium. Comparison of these results with those from other classes of vertebrates shows numerous common traits shared by most groups and also highlights particular features in lungfishes different from actinopterygian fishes that resemble those of amphibians and amniotes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: