Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Identifying variants that contribute to linkage for dichotomous and quantitative traits in extended pedigrees.

  • Wei-Min Chen‎ et al.
  • BMC proceedings‎
  • 2011‎

Compared to genome-wide association analysis, linkage analysis is less influenced by allelic heterogeneity. The use of linkage information in large families should provide a great opportunity to identify less frequent variants. We perform a linkage scan for both dichotomous and quantitative traits in eight extended families. For the dichotomous trait, we identified one linkage region on chromosome 4q. For quantitative traits, we identified two regions on chromosomes 4q and 6p for Q1 and one region on chromosome 6q for Q2. To identify variants that contribute to these linkage signals, we performed standard association analysis in genomic regions of interest. We also screened less frequent variants in the linkage region based on the risk ratio and phenotypic distribution among carriers. Two rare variants at VEGFC and one common variant on chromosome 4q conferred the greatest risk for the dichotomous trait. We identified two rare variants on chromosomes 4q (VEGFC) and 6p (VEGFA) that explain 12.4% of the total phenotypic variance of trait Q1. We also identified four variants (including one at VNN3) on chromosome 6q that are able to drop the linkage LOD from 3.7 to 1.0. These results suggest that the use of classical linkage and association methods in large families can provide a useful approach to identifying variants that are responsible for diseases and complex traits in families.


Evaluating gene x gene and gene x smoking interaction in rheumatoid arthritis using candidate genes in GAW15.

  • Ling Mei‎ et al.
  • BMC proceedings‎
  • 2007‎

We examined the potential gene x gene interactions and gene x smoking interactions in rheumatoid arthritis (RA) using the candidate gene data sets provided by Genetic Analysis Workshop 15 Problem 2. The multifactor dimensionality reduction (MDR) method was used to test gene x gene interactions among candidate genes. The case-only sample was used to test gene x smoking interactions. The best predictive model was the single-locus model with single-nucleotide polymorphism (SNP) rs2476601 in gene PTPN22. However, no clear gene x gene interaction was identified. Substantial departure from multiplicativity was observed between smoking and SNPs in genes CTLA4, PADI4, MIF, and SNPs on chromosome 5 and one haplotype of PTPN22. The strongest evidence of association was identified between the PTPN22 gene and RA status, which was consistently detected in single SNP association, gene x gene interaction and gene x smoking interaction analyses.


Genetic Analysis Workshop 16: Strategies for genome-wide association study analyses.

  • L Adrienne Cupples‎ et al.
  • BMC proceedings‎
  • 2009‎

No abstract available


Imputing rare variants in families using a two-stage approach.

  • Samantha Lent‎ et al.
  • BMC proceedings‎
  • 2016‎

Recent focus on studying rare variants makes imputation accuracy of rare variants an important issue. Many approaches have been proposed to increase imputation accuracy among rare variants, from reference panel selection to combinations of existing methods to multistage analyses. We aimed to bring the strengths of these new approaches together with our proposed two-stage imputation for family data.


Incorporating biological knowledge in the search for gene x gene interaction in genome-wide association studies.

  • Alisa K Manning‎ et al.
  • BMC proceedings‎
  • 2009‎

We sought to find significant gene x gene interaction in a genome-wide association analysis of rheumatoid arthritis (RA) by performing pair-wise tests of interaction among collections of single-nucleotide polymorphisms (SNPs) obtained by one of two methods. The first method involved screening the results of the genome-wide association analysis for main effects p-values < 1 x 10-4. The second method used biological databases such as the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes to define gene collections that each contained one of four genes with known associations with RA: PTPN22, STAT4, TRAF1, and C5. We used a permutation approach to determine whether any of these SNP sets had empirical enrichment of significant interaction effects. We found that the SNP set obtained by the first method was significantly enriched with significant interaction effects (empirical p = 0.003). Additionally, we found that the "protein complex assembly" collection of genes from the Gene Ontology collection containing the TRAF1 gene was significantly enriched with interaction effects with p-values < 1 x 10-8 (empirical p = 0.012).


Application of Bayesian classification with singular value decomposition method in genome-wide association studies.

  • Soonil Kwon‎ et al.
  • BMC proceedings‎
  • 2009‎

To analyze multiple single-nucleotide polymorphisms simultaneously when the number of markers is much larger than the number of studied individuals, as is the situation we have in genome-wide association studies (GWAS), we developed the iterative Bayesian variable selection method and successfully applied it to the simulated rheumatoid arthritis data provided by the Genetic Analysis Workshop 15 (GAW15). One drawback for applying our iterative Bayesian variable selection method is the relatively long running time required for evaluation of GWAS data. To improve computing speed, we recently developed a Bayesian classification with singular value decomposition (BCSVD) method. We have applied the BCSVD method here to the rheumatoid arthritis data distributed by GAW16 Problem 1 and demonstrated that the BCSVD method works well for analyzing GWAS data.


Genetic Analysis Workshop 15: gene expression analysis and approaches to detecting multiple functional loci.

  • Heather J Cordell‎ et al.
  • BMC proceedings‎
  • 2007‎

No abstract available


Joint modeling of linkage and association using affected sib-pair data.

  • Ming-Huei Chen‎ et al.
  • BMC proceedings‎
  • 2007‎

There has been a growing interest in developing strategies for identifying single-nucleotide polymorphisms (SNPs) that explain a linkage signal by joint modeling of linkage and association. We compare several existing methods and propose a new method called the homozygote sharing transmission-disequilibrium test (HSTDT) to detect linkage and association or to identify SNPs explaining the linkage signal on chromosome 6 for rheumatoid arthritis using 100 replicates of the Genetic Analysis Workshop (GAW) 15 simulated affected sib-pair data. Existing methods considered included the family-based tests of association implemented in FBAT, a transmission-disequilibrium test, a conditional logistic regression approach, a likelihood-based approach implemented in LAMP, and the homozygote sharing test (HST). We compared the type I error rates and power for tests classified into three categories according to their null hypotheses: 1) no association in the presence of linkage (i.e., a SNP explains none of the linkage evidence), 2) no linkage adjusting for the association (i.e., a SNP explains all linkage evidence), and 3) no linkage and no association. For testing association in the presence of linkage, we found similar power among all tests except for the homozygote sharing test that had lower power. When testing linkage adjusting for association, similar power was observed between LAMP and HST, but lower power for the conditional logistic regression method. When testing linkage or association, the conditional logistic regression method was more powerful than FBAT.


Application of Bayesian regression with singular value decomposition method in association studies for sequence data.

  • Soonil Kwon‎ et al.
  • BMC proceedings‎
  • 2011‎

Genetic association studies usually involve a large number of single-nucleotide polymorphisms (SNPs) (k) and a relative small sample size (n), which produces the situation that k is much greater than n. Because conventional statistical approaches are unable to deal with multiple SNPs simultaneously when k is much greater than n, single-SNP association studies have been used to identify genes involved in a disease's pathophysiology, which causes a multiple testing problem. To evaluate the contribution of multiple SNPs simultaneously to disease traits when k is much greater than n, we developed the Bayesian regression with singular value decomposition (BRSVD) method. The method reduces the dimension of the design matrix from k to n by applying singular value decomposition to the design matrix. We evaluated the model using a Markov chain Monte Carlo simulation with Gibbs sampler constructed from the posterior densities driven by conjugate prior densities. Permutation was incorporated to generate empirical p-values. We applied the BRSVD method to the sequence data provided by Genetic Analysis Workshop 17 and found that the BRSVD method is a practical method that can be used to analyze sequence data in comparison to the single-SNP association test and the penalized regression method.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: