Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 58 papers

Developing a set of ancestry-sensitive DNA markers reflecting continental origins of humans.

  • Paula Kersbergen‎ et al.
  • BMC genetics‎
  • 2009‎

The identification and use of Ancestry-Sensitive Markers (ASMs), i.e. genetic polymorphisms facilitating the genetic reconstruction of geographical origins of individuals, is far from straightforward.


The Y-chromosome tree bursts into leaf: 13,000 high-confidence SNPs covering the majority of known clades.

  • Pille Hallast‎ et al.
  • Molecular biology and evolution‎
  • 2015‎

Many studies of human populations have used the male-specific region of the Y chromosome (MSY) as a marker, but MSY sequence variants have traditionally been subject to ascertainment bias. Also, dating of haplogroups has relied on Y-specific short tandem repeats (STRs), involving problems of mutation rate choice, and possible long-term mutation saturation. Next-generation sequencing can ascertain single nucleotide polymorphisms (SNPs) in an unbiased way, leading to phylogenies in which branch-lengths are proportional to time, and allowing the times-to-most-recent-common-ancestor (TMRCAs) of nodes to be estimated directly. Here we describe the sequencing of 3.7 Mb of MSY in each of 448 human males at a mean coverage of 51×, yielding 13,261 high-confidence SNPs, 65.9% of which are previously unreported. The resulting phylogeny covers the majority of the known clades, provides date estimates of nodes, and constitutes a robust evolutionary framework for analyzing the history of other classes of mutation. Different clades within the tree show subtle but significant differences in branch lengths to the root. We also apply a set of 23 Y-STRs to the same samples, allowing SNP- and STR-based diversity and TMRCA estimates to be systematically compared. Ongoing purifying selection is suggested by our analysis of the phylogenetic distribution of nonsynonymous variants in 15 MSY single-copy genes.


Determining the quality and complexity of next-generation sequencing data without a reference genome.

  • Seyed Yahya Anvar‎ et al.
  • Genome biology‎
  • 2014‎

We describe an open-source kPAL package that facilitates an alignment-free assessment of the quality and comparability of sequencing datasets by analyzing k-mer frequencies. We show that kPAL can detect technical artefacts such as high duplication rates, library chimeras, contamination and differences in library preparation protocols. kPAL also successfully captures the complexity and diversity of microbiomes and provides a powerful means to study changes in microbial communities. Together, these features make kPAL an attractive and broadly applicable tool to determine the quality and comparability of sequence libraries even in the absence of a reference sequence. kPAL is freely available at https://github.com/LUMC/kPAL webcite.


The Implicitome: A Resource for Rationalizing Gene-Disease Associations.

  • Kristina M Hettne‎ et al.
  • PloS one‎
  • 2016‎

High-throughput experimental methods such as medical sequencing and genome-wide association studies (GWAS) identify increasingly large numbers of potential relations between genetic variants and diseases. Both biological complexity (millions of potential gene-disease associations) and the accelerating rate of data production necessitate computational approaches to prioritize and rationalize potential gene-disease relations. Here, we use concept profile technology to expose from the biomedical literature both explicitly stated gene-disease relations (the explicitome) and a much larger set of implied gene-disease associations (the implicitome). Implicit relations are largely unknown to, or are even unintended by the original authors, but they vastly extend the reach of existing biomedical knowledge for identification and interpretation of gene-disease associations. The implicitome can be used in conjunction with experimental data resources to rationalize both known and novel associations. We demonstrate the usefulness of the implicitome by rationalizing known and novel gene-disease associations, including those from GWAS. To facilitate the re-use of implicit gene-disease associations, we publish our data in compliance with FAIR Data Publishing recommendations [https://www.force11.org/group/fairgroup] using nanopublications. An online tool (http://knowledge.bio) is available to explore established and potential gene-disease associations in the context of other biomedical relations.


Quality assessment of the genetic test for familial hypercholesterolemia in the Netherlands.

  • Iris Kindt‎ et al.
  • Cholesterol‎
  • 2013‎

Introduction. Familial hypercholesterolemia (FH) is an inherited disorder associated with a severely increased risk of cardiovascular disease. Although DNA test results in FH are associated with important medical and ethical consequences, data on accuracy of genetic tests is scarce. Methods. Therefore, we performed a prospective study to assess the overall accuracy of the DNA test used in the genetic cascade screening program for FH in The Netherlands. Individuals aged 18 years and older tested for one of the 5 most prevalent FH mutations, were included consecutively. DNA samples were analyzed by the reference and a counter-expertise laboratory following a standardized procedure. Results. 1003 cases were included. In the end, 317 (32%) carried an FH mutation, whereas in 686 (69%) samples no mutation was found. The overall accuracy of the reference laboratory was 99.8%, with two false positive results identified by the counter-expertise laboratory. Conclusion. The currently used mutation analysis is associated with a very low error rate. Therefore, we do not recommend routine use of duplicate testing.


Non-sequential and multi-step splicing of the dystrophin transcript.

  • Isabella Gazzoli‎ et al.
  • RNA biology‎
  • 2016‎

The dystrophin protein encoding DMD gene is the longest human gene. The 2.2 Mb long human dystrophin transcript takes 16 hours to be transcribed and is co-transcriptionally spliced. It contains long introns (24 over 10kb long, 5 over 100kb long) and the heterogeneity in intron size makes it an ideal transcript to study different aspects of the human splicing process. Splicing is a complex process and much is unknown regarding the splicing of long introns in human genes. Here, we used ultra-deep transcript sequencing to characterize splicing of the dystrophin transcripts in 3 different human skeletal muscle cell lines, and explored the order of intron removal and multi-step splicing. Coverage and read pair analyses showed that around 40% of the introns were not always removed sequentially. Additionally, for the first time, we report that non-consecutive intron removal resulted in 3 or more joined exons which are flanked by unspliced introns and we defined these joined exons as an exon block. Lastly, computational and experimental data revealed that, for the majority of dystrophin introns, multistep splicing events are used to splice out a single intron. Overall, our data show for the first time in a human transcript, that multi-step intron removal is a general feature of mRNA splicing.


Whole Gene Capture Analysis of 15 CRC Susceptibility Genes in Suspected Lynch Syndrome Patients.

  • Anne M L Jansen‎ et al.
  • PloS one‎
  • 2016‎

Lynch Syndrome (LS) is caused by pathogenic germline variants in one of the mismatch repair (MMR) genes. However, up to 60% of MMR-deficient colorectal cancer cases are categorized as suspected Lynch Syndrome (sLS) because no pathogenic MMR germline variant can be identified, which leads to difficulties in clinical management. We therefore analyzed the genomic regions of 15 CRC susceptibility genes in leukocyte DNA of 34 unrelated sLS patients and 11 patients with MLH1 hypermethylated tumors with a clear family history.


Exome sequencing of germline DNA from non-BRCA1/2 familial breast cancer cases selected on the basis of aCGH tumor profiling.

  • Florentine S Hilbers‎ et al.
  • PloS one‎
  • 2013‎

The bulk of familial breast cancer risk (∼70%) cannot be explained by mutations in the known predisposition genes, primarily BRCA1 and BRCA2. Underlying genetic heterogeneity in these cases is the probable explanation for the failure of all attempts to identify further high-risk alleles. While exome sequencing of non-BRCA1/2 breast cancer cases is a promising strategy to detect new high-risk genes, rational approaches to the rigorous pre-selection of cases are needed to reduce heterogeneity. We selected six families in which the tumours of multiple cases showed a specific genomic profile on array comparative genomic hybridization (aCGH). Linkage analysis in these families revealed a region on chromosome 4 with a LOD score of 2.49 under homogeneity. We then analysed the germline DNA of two patients from each family using exome sequencing. Initially focusing on the linkage region, no potentially pathogenic variants could be identified in more than one family. Variants outside the linkage region were then analysed, and we detected multiple possibly pathogenic variants in genes that encode DNA integrity maintenance proteins. However, further analysis led to the rejection of all variants due to poor co-segregation or a relatively high allele frequency in a control population. We concluded that using CGH results to focus on a sub-set of families for sequencing analysis did not enable us to identify a common genetic change responsible for the aggregation of breast cancer in these families. Our data also support the emerging view that non-BRCA1/2 hereditary breast cancer families have a very heterogeneous genetic basis.


The Beaker phenomenon and the genomic transformation of northwest Europe.

  • Iñigo Olalde‎ et al.
  • Nature‎
  • 2018‎

From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain's gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.


Generation and genetic repair of 2 iPSC clones from a patient bearing a heterozygous c.1120del18 mutation in the ACVRL1 gene leading to Hereditary Hemorrhagic Telangiectasia (HHT) type 2.

  • Marga J Bouma‎ et al.
  • Stem cell research‎
  • 2020‎

Fibroblasts from a patient carrying a heterozygous 18bp deletion in exon 8 of the ACVRL1 gene (c.1120del18) were reprogrammed using episomal vectors. The in-frame deletion in ACVRL1 causes the loss of 6 amino acids of the protein, which is associated with Hereditary Hemorrhagic Telangiectasia (HHT) type 2 (Letteboer et al., 2005). CRISPR-Cas9 editing was used to genetically correct the mutation in the induced pluripotent stem cells (iPSCs). The top5-predicted off-target sites were not altered. Patient and isogenic iPSCs showed high pluripotent marker expression, in vitro differentiation capacity into all three germ layers and displayed a normal karyotype. The obtained isogenic pairs will enable proper in vitro disease modelling of HHT (Roman and Hinck, 2017).


Large-scale pedigree analysis highlights rapidly mutating Y-chromosomal short tandem repeats for differentiating patrilineal relatives and predicting their degrees of consanguinity.

  • Arwin Ralf‎ et al.
  • Human genetics‎
  • 2023‎

Rapidly mutating Y-chromosomal short tandem repeats (RM Y-STRs) were suggested for differentiating patrilineally related men as relevant in forensic genetics, anthropological genetics, and genetic genealogy. Empirical data are available for closely related males, while differentiation rates for more distant relatives are scarce. Available RM Y-STR mutation rate estimates are typically based on father-son pair data, while pedigree-based studies for efficient analysis requiring less samples are rare. Here, we present a large-scale pedigree analysis in 9379 pairs of men separated by 1-34 meioses on 30 Y-STRs with increased mutation rates including all known RM Y-STRs (RMplex). For comparison, part of the samples were genotyped at 25 standard Y-STRs mostly with moderate mutation rates (Yfiler Plus). For 43 of the 49 Y-STRs analyzed, pedigree-based mutation rates were similar to previous father-son based estimates, while for six markers significant differences were observed. Male relative differentiation rates from the 30 RMplex Y-STRs were 43%, 84%, 96%, 99%, and 100% for relatives separated by one, four, six, nine, and twelve meioses, respectively, which largely exceeded rates obtained by 25 standard Y-STRs. Machine learning based models for predicting the degree of patrilineal consanguinity yielded accurate and reasonably precise predictions when using RM Y-STRs. Fully matching haplotypes resulted in a 95% confidence interval of 1-6 meioses with RMplex compared to 1-25 with Yfiler Plus. Our comprehensive pedigree study demonstrates the value of RM Y-STRs for differentiating male relatives of various types, in many cases achieving individual identification, thereby overcoming the largest limitation of forensic Y-chromosome analysis.


Regional reemergence of a SARS-CoV-2 Delta lineage amid an Omicron wave detected by wastewater sequencing.

  • Auke Haver‎ et al.
  • Scientific reports‎
  • 2023‎

The implementation and integration of wastewater-based epidemiology constitutes a valuable addition to existing pathogen surveillance systems, such as clinical surveillance for SARS-CoV-2. In the Netherlands, SARS-CoV-2 variant circulation is monitored by performing whole-genome sequencing on wastewater samples. In this manuscript, we describe the detection of an AY.43 lineage (Delta variant) amid a period of BA.5 (Omicron variant) dominance in wastewater samples from two wastewater treatment plants (WWTPs) during the months of August and September of 2022. Our results describe a temporary emergence, which was absent in samples from other WWTPs, and which coincided with peaks in viral load. We show how these lineage estimates can be traced back to lineage-specific substitution patterns. The absence of this variant from reported clinical data, but high associated viral loads suggest cryptic transmission. Our findings highlight the additional value of wastewater surveillance for generating insights into circulating pathogens.


BacTag - a pipeline for fast and accurate gene and allele typing in bacterial sequencing data based on database preprocessing.

  • Lusine Khachatryan‎ et al.
  • BMC genomics‎
  • 2019‎

Bacteria carry a wide array of genes, some of which have multiple alleles. These different alleles are often responsible for distinct types of virulence and can determine the classification at the subspecies levels (e.g., housekeeping genes for Multi Locus Sequence Typing, MLST). Therefore, it is important to rapidly detect not only the gene of interest, but also the relevant allele. Current sequencing-based methods are limited to mapping reads to each of the known allele reference, which is a time-consuming procedure.


Patterns in nuclear and mitochondrial DNA reveal historical and recent isolation in the Black-tailed Godwit (Limosa limosa).

  • Krijn B Trimbos‎ et al.
  • PloS one‎
  • 2014‎

On the basis of morphological differences, three subspecies of Black-tailed Godwit (Limosa limosa) have been recognized (L. l. limosa, L. l. islandica and L. l. melanuroides). In previous studies mitochondrial DNA (mtDNA) sequence data showed minimal genetic divergence between the three subspecies and an absence of sub-structuring within L. l. limosa. Here, population genetic structure and phylogeographic patterns have been analyzed using COI, HVR1 and HVR2 mtDNA sequence data as well as 12 microsatellite loci (nuDNA). The nuDNA data suggest genetic differentiation between L. l. limosa from Sweden and The Netherlands, between L. l. limosa and L. l. islandica, but not between L. l. limosa and L. l. melanuroides. However, the mtDNA data were not consistent with the nuDNA pattern. mtDNA did support a split between L. l. melanuroides and L. l. limosa/L. l. islandica and also demonstrated two L. l. limosa haplotype clusters that were not geographically isolated. This genetic structure can be explained by a scenario of isolation of L. l. melanuroides from L. l. limosa in Beringia during the Last Glacial Maximum. During the Pleistocene separation of L. l. islandica from L. l. limosa occurred, followed by colonization of Iceland by the L. l. islandica during the Holocene. Within L. l. limosa founder events, followed by population expansion, took place during the Holocene also. According to the patterns observed in both markers together and their geographic separation, we propose that the three traditional subspecies indeed represent three separate genetic units.


Introgressive hybridization and the evolutionary history of the herring gull complex revealed by mitochondrial and nuclear DNA.

  • Viviane Sternkopf‎ et al.
  • BMC evolutionary biology‎
  • 2010‎

Based on extensive mitochondrial DNA (mtDNA) sequence data, we previously showed that the model of speciation among species of herring gull (Larus argentatus) complex was not that of a ring species, but most likely due more complex speciation scenario's. We also found that two species, herring gull and glaucous gull (L. hyperboreus) displayed an unexpected biphyletic distribution of their mtDNA haplotypes. It was evident that mtDNA sequence data alone were far from sufficient to obtain a more accurate and detailed insight into the demographic processes that underlie speciation of this complex, and that extensive autosomal genetic analysis was warranted.


The contribution of DNA metabarcoding to fungal conservation: diversity assessment, habitat partitioning and mapping red-listed fungi in protected coastal Salix repens communities in the Netherlands.

  • József Geml‎ et al.
  • PloS one‎
  • 2014‎

Western European coastal sand dunes are highly important for nature conservation. Communities of the creeping willow (Salix repens) represent one of the most characteristic and diverse vegetation types in the dunes. We report here the results of the first kingdom-wide fungal diversity assessment in S. repens coastal dune vegetation. We carried out massively parallel pyrosequencing of ITS rDNA from soil samples taken at ten sites in an extended area of joined nature reserves located along the North Sea coast of the Netherlands, representing habitats with varying soil pH and moisture levels. Fungal communities in Salix repens beds are highly diverse and we detected 1211 non-singleton fungal 97% sequence similarity OTUs after analyzing 688,434 ITS2 rDNA sequences. Our comparison along a north-south transect indicated strong correlation between soil pH and fungal community composition. The total fungal richness and the number OTUs of most fungal taxonomic groups negatively correlated with higher soil pH, with some exceptions. With regard to ecological groups, dark-septate endophytic fungi were more diverse in acidic soils, ectomycorrhizal fungi were represented by more OTUs in calcareous sites, while detected arbuscular mycorrhizal genera fungi showed opposing trends regarding pH. Furthermore, we detected numerous red listed species in our samples often from previously unknown locations, indicating that some of the fungal species currently considered rare may be more abundant in Dutch S. repens communities than previously thought.


Toward male individualization with rapidly mutating y-chromosomal short tandem repeats.

  • Kaye N Ballantyne‎ et al.
  • Human mutation‎
  • 2014‎

Relevant for various areas of human genetics, Y-chromosomal short tandem repeats (Y-STRs) are commonly used for testing close paternal relationships among individuals and populations, and for male lineage identification. However, even the widely used 17-loci Yfiler set cannot resolve individuals and populations completely. Here, 52 centers generated quality-controlled data of 13 rapidly mutating (RM) Y-STRs in 14,644 related and unrelated males from 111 worldwide populations. Strikingly, >99% of the 12,272 unrelated males were completely individualized. Haplotype diversity was extremely high (global: 0.9999985, regional: 0.99836-0.9999988). Haplotype sharing between populations was almost absent except for six (0.05%) of the 12,156 haplotypes. Haplotype sharing within populations was generally rare (0.8% nonunique haplotypes), significantly lower in urban (0.9%) than rural (2.1%) and highest in endogamous groups (14.3%). Analysis of molecular variance revealed 99.98% of variation within populations, 0.018% among populations within groups, and 0.002% among groups. Of the 2,372 newly and 156 previously typed male relative pairs, 29% were differentiated including 27% of the 2,378 father-son pairs. Relative to Yfiler, haplotype diversity was increased in 86% of the populations tested and overall male relative differentiation was raised by 23.5%. Our study demonstrates the value of RM Y-STRs in identifying and separating unrelated and related males and provides a reference database.


Annotating Transcriptional Effects of Genetic Variants in Disease-Relevant Tissue: Transcriptome-Wide Allelic Imbalance in Osteoarthritic Cartilage.

  • Wouter den Hollander‎ et al.
  • Arthritis & rheumatology (Hoboken, N.J.)‎
  • 2019‎

Multiple single-nucleotide polymorphisms (SNPs) conferring susceptibility to osteoarthritis (OA) mark imbalanced expression of positional genes in articular cartilage, reflected by unequally expressed alleles among heterozygotes (allelic imbalance [AI]). We undertook this study to explore the articular cartilage transcriptome from OA patients for AI events to identify putative disease-driving genetic variation.


De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes.

  • Pallavi Chauhan‎ et al.
  • BMC genomics‎
  • 2014‎

There is growing interest in odonates (damselflies and dragonflies) as model organisms in ecology and evolutionary biology but the development of genomic resources has been slow. So far only one draft genome (Ladona fulva) and one transcriptome assembly (Enallagma hageni) have been published. Odonates have some of the most advanced visual systems among insects and several species are colour polymorphic, and genomic and transcriptomic data would allow studying the genomic architecture of these interesting traits and make detailed comparative studies between related species possible. Here, we present a comprehensive de novo transcriptome assembly for the blue-tailed damselfly Ischnura elegans (Odonata: Coenagrionidae) built from short-read RNA-seq data. The transcriptome analysis in this paper provides a first step towards identifying genes and pathways underlying the visual and colour systems in this insect group.


Gene conversion violates the stepwise mutation model for microsatellites in y-chromosomal palindromic repeats.

  • Patricia Balaresque‎ et al.
  • Human mutation‎
  • 2014‎

The male-specific region of the human Y chromosome (MSY) contains eight large inverted repeats (palindromes), in which high-sequence similarity between repeat arms is maintained by gene conversion. These palindromes also harbor microsatellites, considered to evolve via a stepwise mutation model (SMM). Here, we ask whether gene conversion between palindrome microsatellites contributes to their mutational dynamics. First, we study the duplicated tetranucleotide microsatellite DYS385a,b lying in palindrome P4. We show, by comparing observed data with simulated data under a SMM within haplogroups, that observed heteroallelic combinations in which the modal repeat number difference between copies was large, can give rise to homoallelic combinations with zero-repeats difference, equivalent to many single-step mutations. These are unlikely to be generated under a strict SMM, suggesting the action of gene conversion. Second, we show that the intercopy repeat number difference for a large set of duplicated microsatellites in all palindromes in the MSY reference sequence is significantly reduced compared with that for nonpalindrome-duplicated microsatellites, suggesting that the former are characterized by unusual evolutionary dynamics. These observations indicate that gene conversion violates the SMM for microsatellites in palindromes, homogenizing copies within individual Y chromosomes, but increasing overall haplotype diversity among chromosomes within related groups.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: